Metamath Proof Explorer


Theorem fidomtri

Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion fidomtri A Fin B V A B ¬ B A

Proof

Step Hyp Ref Expression
1 domnsym A B ¬ B A
2 finnum A Fin A dom card
3 2 adantr A Fin B V A dom card
4 finnum B Fin B dom card
5 domtri2 A dom card B dom card A B ¬ B A
6 3 4 5 syl2an A Fin B V B Fin A B ¬ B A
7 6 biimprd A Fin B V B Fin ¬ B A A B
8 isinffi ¬ B Fin A Fin a a : A 1-1 B
9 8 ancoms A Fin ¬ B Fin a a : A 1-1 B
10 9 adantlr A Fin B V ¬ B Fin a a : A 1-1 B
11 brdomg B V A B a a : A 1-1 B
12 11 ad2antlr A Fin B V ¬ B Fin A B a a : A 1-1 B
13 10 12 mpbird A Fin B V ¬ B Fin A B
14 13 a1d A Fin B V ¬ B Fin ¬ B A A B
15 7 14 pm2.61dan A Fin B V ¬ B A A B
16 1 15 impbid2 A Fin B V A B ¬ B A