Metamath Proof Explorer


Theorem fidomtri2

Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion fidomtri2 A V B Fin A B ¬ B A

Proof

Step Hyp Ref Expression
1 domnsym A B ¬ B A
2 sdomdom A B A B
3 2 con3i ¬ A B ¬ A B
4 fidomtri B Fin A V B A ¬ A B
5 4 ancoms A V B Fin B A ¬ A B
6 3 5 syl5ibr A V B Fin ¬ A B B A
7 ensym B A A B
8 endom A B A B
9 7 8 syl B A A B
10 9 con3i ¬ A B ¬ B A
11 6 10 jca2 A V B Fin ¬ A B B A ¬ B A
12 brsdom B A B A ¬ B A
13 11 12 syl6ibr A V B Fin ¬ A B B A
14 13 con1d A V B Fin ¬ B A A B
15 1 14 impbid2 A V B Fin A B ¬ B A