Metamath Proof Explorer


Theorem fiidomfld

Description: A finite integral domain is a field. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis fidomndrng.b B = Base R
Assertion fiidomfld B Fin R IDomn R Field

Proof

Step Hyp Ref Expression
1 fidomndrng.b B = Base R
2 1 fidomndrng B Fin R Domn R DivRing
3 2 anbi2d B Fin R CRing R Domn R CRing R DivRing
4 isidom R IDomn R CRing R Domn
5 isfld R Field R DivRing R CRing
6 5 biancomi R Field R CRing R DivRing
7 3 4 6 3bitr4g B Fin R IDomn R Field