Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
fiinfcl
Next ⟩
infltoreq
Metamath Proof Explorer
Ascii
Unicode
Theorem
fiinfcl
Description:
A nonempty finite set contains its infimum.
(Contributed by
AV
, 3-Sep-2020)
Ref
Expression
Assertion
fiinfcl
⊢
R
Or
A
∧
B
∈
Fin
∧
B
≠
∅
∧
B
⊆
A
→
sup
B
A
R
∈
B
Proof
Step
Hyp
Ref
Expression
1
df-inf
⊢
sup
B
A
R
=
sup
B
A
R
-1
2
cnvso
⊢
R
Or
A
↔
R
-1
Or
A
3
fisupcl
⊢
R
-1
Or
A
∧
B
∈
Fin
∧
B
≠
∅
∧
B
⊆
A
→
sup
B
A
R
-1
∈
B
4
2
3
sylanb
⊢
R
Or
A
∧
B
∈
Fin
∧
B
≠
∅
∧
B
⊆
A
→
sup
B
A
R
-1
∈
B
5
1
4
eqeltrid
⊢
R
Or
A
∧
B
∈
Fin
∧
B
≠
∅
∧
B
⊆
A
→
sup
B
A
R
∈
B