Metamath Proof Explorer


Theorem fiinfcl

Description: A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020)

Ref Expression
Assertion fiinfcl R Or A B Fin B B A sup B A R B

Proof

Step Hyp Ref Expression
1 df-inf sup B A R = sup B A R -1
2 cnvso R Or A R -1 Or A
3 fisupcl R -1 Or A B Fin B B A sup B A R -1 B
4 2 3 sylanb R Or A B Fin B B A sup B A R -1 B
5 1 4 eqeltrid R Or A B Fin B B A sup B A R B