Metamath Proof Explorer


Theorem fiinfnf1o

Description: There is no bijection between a finite set and an infinite set. (Contributed by Alexander van der Vekens, 25-Dec-2017)

Ref Expression
Assertion fiinfnf1o A Fin ¬ B Fin ¬ f f : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 f1ofo f : A 1-1 onto B f : A onto B
2 fofi A Fin f : A onto B B Fin
3 2 ex A Fin f : A onto B B Fin
4 1 3 syl5 A Fin f : A 1-1 onto B B Fin
5 4 exlimdv A Fin f f : A 1-1 onto B B Fin
6 5 con3dimp A Fin ¬ B Fin ¬ f f : A 1-1 onto B