Metamath Proof Explorer


Theorem fiinopn

Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012)

Ref Expression
Assertion fiinopn J Top A J A A Fin A J

Proof

Step Hyp Ref Expression
1 elpwg A Fin A 𝒫 J A J
2 sseq1 x = A x J A J
3 neeq1 x = A x A
4 eleq1 x = A x Fin A Fin
5 2 3 4 3anbi123d x = A x J x x Fin A J A A Fin
6 inteq x = A x = A
7 6 eleq1d x = A x J A J
8 7 imbi2d x = A J Top x J J Top A J
9 5 8 imbi12d x = A x J x x Fin J Top x J A J A A Fin J Top A J
10 sp x x J x x Fin x J x J x x Fin x J
11 10 adantl x x J x J x x J x x Fin x J x J x x Fin x J
12 istop2g J Top J Top x x J x J x x J x x Fin x J
13 12 ibi J Top x x J x J x x J x x Fin x J
14 11 13 syl11 x J x x Fin J Top x J
15 9 14 vtoclg A 𝒫 J A J A A Fin J Top A J
16 15 com12 A J A A Fin A 𝒫 J J Top A J
17 16 3exp A J A A Fin A 𝒫 J J Top A J
18 17 com3r A Fin A J A A 𝒫 J J Top A J
19 18 com4r A 𝒫 J A Fin A J A J Top A J
20 1 19 syl6bir A Fin A J A Fin A J A J Top A J
21 20 pm2.43a A Fin A J A J A J Top A J
22 21 com4l A J A J A A Fin J Top A J
23 22 pm2.43i A J A A Fin J Top A J
24 23 3imp A J A A Fin J Top A J
25 24 com12 J Top A J A A Fin A J