Metamath Proof Explorer


Theorem fileln0

Description: An element of a filter is nonempty. (Contributed by FL, 24-May-2011) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Assertion fileln0 F Fil X A F A

Proof

Step Hyp Ref Expression
1 id A F A F
2 0nelfil F Fil X ¬ F
3 nelne2 A F ¬ F A
4 1 2 3 syl2anr F Fil X A F A