Metamath Proof Explorer


Theorem filelss

Description: An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filelss F Fil X A F A X

Proof

Step Hyp Ref Expression
1 filfbas F Fil X F fBas X
2 fbelss F fBas X A F A X
3 1 2 sylan F Fil X A F A X