Metamath Proof Explorer


Theorem filfi

Description: A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filfi F Fil X fi F = F

Proof

Step Hyp Ref Expression
1 filin F Fil X x F y F x y F
2 1 3expib F Fil X x F y F x y F
3 2 ralrimivv F Fil X x F y F x y F
4 inficl F Fil X x F y F x y F fi F = F
5 3 4 mpbid F Fil X fi F = F