Metamath Proof Explorer


Theorem filin

Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filin F Fil X A F B F A B F

Proof

Step Hyp Ref Expression
1 filfbas F Fil X F fBas X
2 fbasssin F fBas X A F B F x F x A B
3 1 2 syl3an1 F Fil X A F B F x F x A B
4 inss1 A B A
5 filelss F Fil X A F A X
6 4 5 sstrid F Fil X A F A B X
7 filss F Fil X x F A B X x A B A B F
8 7 3exp2 F Fil X x F A B X x A B A B F
9 8 com23 F Fil X A B X x F x A B A B F
10 9 imp F Fil X A B X x F x A B A B F
11 10 rexlimdv F Fil X A B X x F x A B A B F
12 6 11 syldan F Fil X A F x F x A B A B F
13 12 3adant3 F Fil X A F B F x F x A B A B F
14 3 13 mpd F Fil X A F B F A B F