Metamath Proof Explorer


Theorem filin

Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filin FFilXAFBFABF

Proof

Step Hyp Ref Expression
1 filfbas FFilXFfBasX
2 fbasssin FfBasXAFBFxFxAB
3 1 2 syl3an1 FFilXAFBFxFxAB
4 inss1 ABA
5 filelss FFilXAFAX
6 4 5 sstrid FFilXAFABX
7 filss FFilXxFABXxABABF
8 7 3exp2 FFilXxFABXxABABF
9 8 com23 FFilXABXxFxABABF
10 9 imp FFilXABXxFxABABF
11 10 rexlimdv FFilXABXxFxABABF
12 6 11 syldan FFilXAFxFxABABF
13 12 3adant3 FFilXAFBFxFxABABF
14 3 13 mpd FFilXAFBFABF