Metamath Proof Explorer


Theorem filinn0

Description: The intersection of two elements of a filter can't be empty. (Contributed by FL, 16-Sep-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filinn0 F Fil X A F B F A B

Proof

Step Hyp Ref Expression
1 simp1 F Fil X A F B F F Fil X
2 filin F Fil X A F B F A B F
3 fileln0 F Fil X A B F A B
4 1 2 3 syl2anc F Fil X A F B F A B