Metamath Proof Explorer


Theorem filintn0

Description: A filter has the finite intersection property. Remark below Definition 1 of BourbakiTop1 p. I.36. (Contributed by FL, 20-Sep-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filintn0 F Fil X A F A A Fin A

Proof

Step Hyp Ref Expression
1 elfir F Fil X A F A A Fin A fi F
2 filfi F Fil X fi F = F
3 2 adantr F Fil X A F A A Fin fi F = F
4 1 3 eleqtrd F Fil X A F A A Fin A F
5 fileln0 F Fil X A F A
6 4 5 syldan F Fil X A F A A Fin A