Metamath Proof Explorer


Theorem filnetlem4

Description: Lemma for filnet . (Contributed by Jeff Hankins, 15-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypotheses filnet.h H = n F n × n
filnet.d D = x y | x H y H 1 st y 1 st x
Assertion filnetlem4 F Fil X d DirRel f f : dom d X F = X FilMap f ran tail d

Proof

Step Hyp Ref Expression
1 filnet.h H = n F n × n
2 filnet.d D = x y | x H y H 1 st y 1 st x
3 1 2 filnetlem3 H = D F Fil X H F × X D DirRel
4 3 simpri F Fil X H F × X D DirRel
5 4 simprd F Fil X D DirRel
6 f2ndres 2 nd F × X : F × X X
7 4 simpld F Fil X H F × X
8 fssres2 2 nd F × X : F × X X H F × X 2 nd H : H X
9 6 7 8 sylancr F Fil X 2 nd H : H X
10 filtop F Fil X X F
11 xpexg F Fil X X F F × X V
12 10 11 mpdan F Fil X F × X V
13 12 7 ssexd F Fil X H V
14 fex 2 nd H : H X H V 2 nd H V
15 9 13 14 syl2anc F Fil X 2 nd H V
16 dirdm D DirRel dom D = D
17 5 16 syl F Fil X dom D = D
18 3 simpli H = D
19 17 18 syl6reqr F Fil X H = dom D
20 19 feq2d F Fil X 2 nd H : H X 2 nd H : dom D X
21 9 20 mpbid F Fil X 2 nd H : dom D X
22 eqid dom D = dom D
23 22 tailf D DirRel tail D : dom D 𝒫 dom D
24 5 23 syl F Fil X tail D : dom D 𝒫 dom D
25 19 feq2d F Fil X tail D : H 𝒫 dom D tail D : dom D 𝒫 dom D
26 24 25 mpbird F Fil X tail D : H 𝒫 dom D
27 26 adantr F Fil X t X tail D : H 𝒫 dom D
28 ffn tail D : H 𝒫 dom D tail D Fn H
29 imaeq2 d = tail D f 2 nd H d = 2 nd H tail D f
30 29 sseq1d d = tail D f 2 nd H d t 2 nd H tail D f t
31 30 rexrn tail D Fn H d ran tail D 2 nd H d t f H 2 nd H tail D f t
32 27 28 31 3syl F Fil X t X d ran tail D 2 nd H d t f H 2 nd H tail D f t
33 fo2nd 2 nd : V onto V
34 fofn 2 nd : V onto V 2 nd Fn V
35 33 34 ax-mp 2 nd Fn V
36 ssv H V
37 fnssres 2 nd Fn V H V 2 nd H Fn H
38 35 36 37 mp2an 2 nd H Fn H
39 fnfun 2 nd H Fn H Fun 2 nd H
40 38 39 ax-mp Fun 2 nd H
41 27 ffvelrnda F Fil X t X f H tail D f 𝒫 dom D
42 41 elpwid F Fil X t X f H tail D f dom D
43 19 ad2antrr F Fil X t X f H H = dom D
44 42 43 sseqtrrd F Fil X t X f H tail D f H
45 fndm 2 nd H Fn H dom 2 nd H = H
46 38 45 ax-mp dom 2 nd H = H
47 44 46 sseqtrrdi F Fil X t X f H tail D f dom 2 nd H
48 funimass4 Fun 2 nd H tail D f dom 2 nd H 2 nd H tail D f t d tail D f 2 nd H d t
49 40 47 48 sylancr F Fil X t X f H 2 nd H tail D f t d tail D f 2 nd H d t
50 5 ad2antrr F Fil X t X f H D DirRel
51 simpr F Fil X t X f H f H
52 51 43 eleqtrd F Fil X t X f H f dom D
53 vex d V
54 53 a1i F Fil X t X f H d V
55 22 eltail D DirRel f dom D d V d tail D f f D d
56 50 52 54 55 syl3anc F Fil X t X f H d tail D f f D d
57 51 biantrurd F Fil X t X f H d H f H d H
58 57 anbi1d F Fil X t X f H d H 1 st d 1 st f f H d H 1 st d 1 st f
59 vex f V
60 1 2 59 53 filnetlem1 f D d f H d H 1 st d 1 st f
61 58 60 syl6bbr F Fil X t X f H d H 1 st d 1 st f f D d
62 56 61 bitr4d F Fil X t X f H d tail D f d H 1 st d 1 st f
63 62 imbi1d F Fil X t X f H d tail D f 2 nd H d t d H 1 st d 1 st f 2 nd H d t
64 fvres d H 2 nd H d = 2 nd d
65 64 eleq1d d H 2 nd H d t 2 nd d t
66 65 adantr d H 1 st d 1 st f 2 nd H d t 2 nd d t
67 66 pm5.74i d H 1 st d 1 st f 2 nd H d t d H 1 st d 1 st f 2 nd d t
68 impexp d H 1 st d 1 st f 2 nd d t d H 1 st d 1 st f 2 nd d t
69 67 68 bitri d H 1 st d 1 st f 2 nd H d t d H 1 st d 1 st f 2 nd d t
70 63 69 syl6bb F Fil X t X f H d tail D f 2 nd H d t d H 1 st d 1 st f 2 nd d t
71 70 ralbidv2 F Fil X t X f H d tail D f 2 nd H d t d H 1 st d 1 st f 2 nd d t
72 49 71 bitrd F Fil X t X f H 2 nd H tail D f t d H 1 st d 1 st f 2 nd d t
73 72 rexbidva F Fil X t X f H 2 nd H tail D f t f H d H 1 st d 1 st f 2 nd d t
74 vex k V
75 vex v V
76 74 75 op1std d = k v 1 st d = k
77 76 sseq1d d = k v 1 st d 1 st f k 1 st f
78 74 75 op2ndd d = k v 2 nd d = v
79 78 eleq1d d = k v 2 nd d t v t
80 77 79 imbi12d d = k v 1 st d 1 st f 2 nd d t k 1 st f v t
81 80 raliunxp d k F k × k 1 st d 1 st f 2 nd d t k F v k k 1 st f v t
82 sneq n = k n = k
83 id n = k n = k
84 82 83 xpeq12d n = k n × n = k × k
85 84 cbviunv n F n × n = k F k × k
86 1 85 eqtri H = k F k × k
87 86 raleqi d H 1 st d 1 st f 2 nd d t d k F k × k 1 st d 1 st f 2 nd d t
88 dfss3 k t v k v t
89 88 imbi2i k 1 st f k t k 1 st f v k v t
90 r19.21v v k k 1 st f v t k 1 st f v k v t
91 89 90 bitr4i k 1 st f k t v k k 1 st f v t
92 91 ralbii k F k 1 st f k t k F v k k 1 st f v t
93 81 87 92 3bitr4i d H 1 st d 1 st f 2 nd d t k F k 1 st f k t
94 93 rexbii f H d H 1 st d 1 st f 2 nd d t f H k F k 1 st f k t
95 1 rexeqi f H k F k 1 st f k t f n F n × n k F k 1 st f k t
96 vex n V
97 vex m V
98 96 97 op1std f = n m 1 st f = n
99 98 sseq2d f = n m k 1 st f k n
100 99 imbi1d f = n m k 1 st f k t k n k t
101 100 ralbidv f = n m k F k 1 st f k t k F k n k t
102 101 rexiunxp f n F n × n k F k 1 st f k t n F m n k F k n k t
103 94 95 102 3bitri f H d H 1 st d 1 st f 2 nd d t n F m n k F k n k t
104 fileln0 F Fil X n F n
105 104 adantlr F Fil X t X n F n
106 r19.9rzv n k F k n k t m n k F k n k t
107 105 106 syl F Fil X t X n F k F k n k t m n k F k n k t
108 ssid n n
109 sseq1 k = n k n n n
110 sseq1 k = n k t n t
111 109 110 imbi12d k = n k n k t n n n t
112 111 rspcv n F k F k n k t n n n t
113 108 112 mpii n F k F k n k t n t
114 113 adantl F Fil X t X n F k F k n k t n t
115 sstr2 k n n t k t
116 115 com12 n t k n k t
117 116 ralrimivw n t k F k n k t
118 114 117 impbid1 F Fil X t X n F k F k n k t n t
119 107 118 bitr3d F Fil X t X n F m n k F k n k t n t
120 119 rexbidva F Fil X t X n F m n k F k n k t n F n t
121 103 120 syl5bb F Fil X t X f H d H 1 st d 1 st f 2 nd d t n F n t
122 32 73 121 3bitrd F Fil X t X d ran tail D 2 nd H d t n F n t
123 122 pm5.32da F Fil X t X d ran tail D 2 nd H d t t X n F n t
124 filn0 F Fil X F
125 96 snnz n
126 104 125 jctil F Fil X n F n n
127 neanior n n ¬ n = n =
128 126 127 sylib F Fil X n F ¬ n = n =
129 ss0b n × n n × n =
130 xpeq0 n × n = n = n =
131 129 130 bitri n × n n = n =
132 128 131 sylnibr F Fil X n F ¬ n × n
133 132 ralrimiva F Fil X n F ¬ n × n
134 r19.2z F n F ¬ n × n n F ¬ n × n
135 124 133 134 syl2anc F Fil X n F ¬ n × n
136 rexnal n F ¬ n × n ¬ n F n × n
137 135 136 sylib F Fil X ¬ n F n × n
138 1 sseq1i H n F n × n
139 ss0b H H =
140 iunss n F n × n n F n × n
141 138 139 140 3bitr3i H = n F n × n
142 141 necon3abii H ¬ n F n × n
143 137 142 sylibr F Fil X H
144 dmresi dom I H = H
145 1 2 filnetlem2 I H D D H × H
146 145 simpli I H D
147 dmss I H D dom I H dom D
148 146 147 ax-mp dom I H dom D
149 144 148 eqsstrri H dom D
150 145 simpri D H × H
151 dmss D H × H dom D dom H × H
152 150 151 ax-mp dom D dom H × H
153 dmxpid dom H × H = H
154 152 153 sseqtri dom D H
155 149 154 eqssi H = dom D
156 155 tailfb D DirRel H ran tail D fBas H
157 5 143 156 syl2anc F Fil X ran tail D fBas H
158 elfm X F ran tail D fBas H 2 nd H : H X t X FilMap 2 nd H ran tail D t X d ran tail D 2 nd H d t
159 10 157 9 158 syl3anc F Fil X t X FilMap 2 nd H ran tail D t X d ran tail D 2 nd H d t
160 filfbas F Fil X F fBas X
161 elfg F fBas X t X filGen F t X n F n t
162 160 161 syl F Fil X t X filGen F t X n F n t
163 123 159 162 3bitr4d F Fil X t X FilMap 2 nd H ran tail D t X filGen F
164 163 eqrdv F Fil X X FilMap 2 nd H ran tail D = X filGen F
165 fgfil F Fil X X filGen F = F
166 164 165 eqtr2d F Fil X F = X FilMap 2 nd H ran tail D
167 21 166 jca F Fil X 2 nd H : dom D X F = X FilMap 2 nd H ran tail D
168 feq1 f = 2 nd H f : dom D X 2 nd H : dom D X
169 oveq2 f = 2 nd H X FilMap f = X FilMap 2 nd H
170 169 fveq1d f = 2 nd H X FilMap f ran tail D = X FilMap 2 nd H ran tail D
171 170 eqeq2d f = 2 nd H F = X FilMap f ran tail D F = X FilMap 2 nd H ran tail D
172 168 171 anbi12d f = 2 nd H f : dom D X F = X FilMap f ran tail D 2 nd H : dom D X F = X FilMap 2 nd H ran tail D
173 172 spcegv 2 nd H V 2 nd H : dom D X F = X FilMap 2 nd H ran tail D f f : dom D X F = X FilMap f ran tail D
174 15 167 173 sylc F Fil X f f : dom D X F = X FilMap f ran tail D
175 dmeq d = D dom d = dom D
176 175 feq2d d = D f : dom d X f : dom D X
177 fveq2 d = D tail d = tail D
178 177 rneqd d = D ran tail d = ran tail D
179 178 fveq2d d = D X FilMap f ran tail d = X FilMap f ran tail D
180 179 eqeq2d d = D F = X FilMap f ran tail d F = X FilMap f ran tail D
181 176 180 anbi12d d = D f : dom d X F = X FilMap f ran tail d f : dom D X F = X FilMap f ran tail D
182 181 exbidv d = D f f : dom d X F = X FilMap f ran tail d f f : dom D X F = X FilMap f ran tail D
183 182 rspcev D DirRel f f : dom D X F = X FilMap f ran tail D d DirRel f f : dom d X F = X FilMap f ran tail d
184 5 174 183 syl2anc F Fil X d DirRel f f : dom d X F = X FilMap f ran tail d