Metamath Proof Explorer


Theorem filnm

Description: Finite left modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis filnm.b B = Base W
Assertion filnm W LMod B Fin W LNoeM

Proof

Step Hyp Ref Expression
1 filnm.b B = Base W
2 simpl W LMod B Fin W LMod
3 eqid LSubSp W = LSubSp W
4 1 3 lssss a LSubSp W a B
5 4 adantl W LMod B Fin a LSubSp W a B
6 velpw a 𝒫 B a B
7 5 6 sylibr W LMod B Fin a LSubSp W a 𝒫 B
8 simplr W LMod B Fin a LSubSp W B Fin
9 ssfi B Fin a B a Fin
10 8 5 9 syl2anc W LMod B Fin a LSubSp W a Fin
11 7 10 elind W LMod B Fin a LSubSp W a 𝒫 B Fin
12 eqid LSpan W = LSpan W
13 3 12 lspid W LMod a LSubSp W LSpan W a = a
14 13 adantlr W LMod B Fin a LSubSp W LSpan W a = a
15 14 eqcomd W LMod B Fin a LSubSp W a = LSpan W a
16 fveq2 b = a LSpan W b = LSpan W a
17 16 rspceeqv a 𝒫 B Fin a = LSpan W a b 𝒫 B Fin a = LSpan W b
18 11 15 17 syl2anc W LMod B Fin a LSubSp W b 𝒫 B Fin a = LSpan W b
19 18 ralrimiva W LMod B Fin a LSubSp W b 𝒫 B Fin a = LSpan W b
20 1 3 12 islnm2 W LNoeM W LMod a LSubSp W b 𝒫 B Fin a = LSpan W b
21 2 19 20 sylanbrc W LMod B Fin W LNoeM