Metamath Proof Explorer


Theorem filss

Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filss F Fil X A F B X A B B F

Proof

Step Hyp Ref Expression
1 isfil F Fil X F fBas X x 𝒫 X F 𝒫 x x F
2 1 simprbi F Fil X x 𝒫 X F 𝒫 x x F
3 2 adantr F Fil X A F B X A B x 𝒫 X F 𝒫 x x F
4 elfvdm F Fil X X dom Fil
5 simp2 A F B X A B B X
6 elpw2g X dom Fil B 𝒫 X B X
7 6 biimpar X dom Fil B X B 𝒫 X
8 4 5 7 syl2an F Fil X A F B X A B B 𝒫 X
9 simpr1 F Fil X A F B X A B A F
10 simpr3 F Fil X A F B X A B A B
11 9 10 elpwd F Fil X A F B X A B A 𝒫 B
12 inelcm A F A 𝒫 B F 𝒫 B
13 9 11 12 syl2anc F Fil X A F B X A B F 𝒫 B
14 pweq x = B 𝒫 x = 𝒫 B
15 14 ineq2d x = B F 𝒫 x = F 𝒫 B
16 15 neeq1d x = B F 𝒫 x F 𝒫 B
17 eleq1 x = B x F B F
18 16 17 imbi12d x = B F 𝒫 x x F F 𝒫 B B F
19 18 rspccv x 𝒫 X F 𝒫 x x F B 𝒫 X F 𝒫 B B F
20 3 8 13 19 syl3c F Fil X A F B X A B B F