Metamath Proof Explorer


Theorem filssufil

Description: A filter is contained in some ultrafilter. (Requires the Axiom of Choice, via numth3 .) (Contributed by Jeff Hankins, 2-Dec-2009) (Revised by Stefan O'Rear, 29-Jul-2015)

Ref Expression
Assertion filssufil F Fil X f UFil X F f

Proof

Step Hyp Ref Expression
1 filtop F Fil X X F
2 pwexg X F 𝒫 X V
3 pwexg 𝒫 X V 𝒫 𝒫 X V
4 numth3 𝒫 𝒫 X V 𝒫 𝒫 X dom card
5 1 2 3 4 4syl F Fil X 𝒫 𝒫 X dom card
6 filssufilg F Fil X 𝒫 𝒫 X dom card f UFil X F f
7 5 6 mpdan F Fil X f UFil X F f