Metamath Proof Explorer


Theorem filtop

Description: The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filtop F Fil X X F

Proof

Step Hyp Ref Expression
1 filfbas F Fil X F fBas X
2 fbasne0 F fBas X F
3 1 2 syl F Fil X F
4 n0 F x x F
5 filelss F Fil X x F x X
6 ssid X X
7 filss F Fil X x F X X x X X F
8 7 3exp2 F Fil X x F X X x X X F
9 8 imp F Fil X x F X X x X X F
10 6 9 mpi F Fil X x F x X X F
11 5 10 mpd F Fil X x F X F
12 11 ex F Fil X x F X F
13 12 exlimdv F Fil X x x F X F
14 4 13 syl5bi F Fil X F X F
15 3 14 mpd F Fil X X F