Metamath Proof Explorer


Theorem filunibas

Description: Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion filunibas F Fil X F = X

Proof

Step Hyp Ref Expression
1 filsspw F Fil X F 𝒫 X
2 sspwuni F 𝒫 X F X
3 1 2 sylib F Fil X F X
4 filtop F Fil X X F
5 unissel F X X F F = X
6 3 4 5 syl2anc F Fil X F = X