Metamath Proof Explorer


Theorem filunirn

Description: Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion filunirn FranFilFFilF

Proof

Step Hyp Ref Expression
1 fvex fBasyV
2 1 rabex wfBasy|z𝒫yw𝒫zzwV
3 df-fil Fil=yVwfBasy|z𝒫yw𝒫zzw
4 2 3 fnmpti FilFnV
5 fnunirn FilFnVFranFilxVFFilx
6 4 5 ax-mp FranFilxVFFilx
7 filunibas FFilxF=x
8 7 fveq2d FFilxFilF=Filx
9 8 eleq2d FFilxFFilFFFilx
10 9 ibir FFilxFFilF
11 10 rexlimivw xVFFilxFFilF
12 6 11 sylbi FranFilFFilF
13 fvssunirn FilFranFil
14 13 sseli FFilFFranFil
15 12 14 impbii FranFilFFilF