Metamath Proof Explorer


Theorem fimacnvdisj

Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007)

Ref Expression
Assertion fimacnvdisj F : A B B C = F -1 C =

Proof

Step Hyp Ref Expression
1 df-rn ran F = dom F -1
2 frn F : A B ran F B
3 2 adantr F : A B B C = ran F B
4 1 3 eqsstrrid F : A B B C = dom F -1 B
5 ssdisj dom F -1 B B C = dom F -1 C =
6 4 5 sylancom F : A B B C = dom F -1 C =
7 imadisj F -1 C = dom F -1 C =
8 6 7 sylibr F : A B B C = F -1 C =