Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fimadmfo
Next ⟩
fores
Metamath Proof Explorer
Ascii
Unicode
Theorem
fimadmfo
Description:
A function is a function onto the image of its domain.
(Contributed by
AV
, 1-Dec-2022)
Ref
Expression
Assertion
fimadmfo
⊢
F
:
A
⟶
B
→
F
:
A
⟶
onto
F
A
Proof
Step
Hyp
Ref
Expression
1
fdm
⊢
F
:
A
⟶
B
→
dom
⁡
F
=
A
2
ffn
⊢
F
:
A
⟶
B
→
F
Fn
A
3
2
adantr
⊢
F
:
A
⟶
B
∧
dom
⁡
F
=
A
→
F
Fn
A
4
dffn4
⊢
F
Fn
A
↔
F
:
A
⟶
onto
ran
⁡
F
5
3
4
sylib
⊢
F
:
A
⟶
B
∧
dom
⁡
F
=
A
→
F
:
A
⟶
onto
ran
⁡
F
6
imaeq2
⊢
A
=
dom
⁡
F
→
F
A
=
F
dom
⁡
F
7
imadmrn
⊢
F
dom
⁡
F
=
ran
⁡
F
8
6
7
eqtrdi
⊢
A
=
dom
⁡
F
→
F
A
=
ran
⁡
F
9
8
eqcoms
⊢
dom
⁡
F
=
A
→
F
A
=
ran
⁡
F
10
9
adantl
⊢
F
:
A
⟶
B
∧
dom
⁡
F
=
A
→
F
A
=
ran
⁡
F
11
foeq3
⊢
F
A
=
ran
⁡
F
→
F
:
A
⟶
onto
F
A
↔
F
:
A
⟶
onto
ran
⁡
F
12
10
11
syl
⊢
F
:
A
⟶
B
∧
dom
⁡
F
=
A
→
F
:
A
⟶
onto
F
A
↔
F
:
A
⟶
onto
ran
⁡
F
13
5
12
mpbird
⊢
F
:
A
⟶
B
∧
dom
⁡
F
=
A
→
F
:
A
⟶
onto
F
A
14
1
13
mpdan
⊢
F
:
A
⟶
B
→
F
:
A
⟶
onto
F
A