Metamath Proof Explorer


Theorem fimadmfoALT

Description: Alternate proof of fimadmfo , based on fores . A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fimadmfoALT F : A B F : A onto F A

Proof

Step Hyp Ref Expression
1 fdm F : A B dom F = A
2 frel F : A B Rel F
3 resdm Rel F F dom F = F
4 3 eqcomd Rel F F = F dom F
5 2 4 syl F : A B F = F dom F
6 reseq2 dom F = A F dom F = F A
7 5 6 sylan9eq F : A B dom F = A F = F A
8 1 7 mpdan F : A B F = F A
9 ffun F : A B Fun F
10 eqimss2 dom F = A A dom F
11 1 10 syl F : A B A dom F
12 9 11 jca F : A B Fun F A dom F
13 12 adantr F : A B F = F A Fun F A dom F
14 fores Fun F A dom F F A : A onto F A
15 13 14 syl F : A B F = F A F A : A onto F A
16 foeq1 F = F A F : A onto F A F A : A onto F A
17 16 adantl F : A B F = F A F : A onto F A F A : A onto F A
18 15 17 mpbird F : A B F = F A F : A onto F A
19 8 18 mpdan F : A B F : A onto F A