Metamath Proof Explorer


Theorem fimaproj

Description: Image of a cartesian product for a function on ordered pairs with values expressed as ordered pairs. Note that F and G are the projections of H to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019)

Ref Expression
Hypotheses fvproj.h H = x A , y B F x G y
fimaproj.f φ F Fn A
fimaproj.g φ G Fn B
fimaproj.x φ X A
fimaproj.y φ Y B
Assertion fimaproj φ H X × Y = F X × G Y

Proof

Step Hyp Ref Expression
1 fvproj.h H = x A , y B F x G y
2 fimaproj.f φ F Fn A
3 fimaproj.g φ G Fn B
4 fimaproj.x φ X A
5 fimaproj.y φ Y B
6 opex F 1 st z G 2 nd z V
7 vex x V
8 vex y V
9 7 8 op1std z = x y 1 st z = x
10 9 fveq2d z = x y F 1 st z = F x
11 7 8 op2ndd z = x y 2 nd z = y
12 11 fveq2d z = x y G 2 nd z = G y
13 10 12 opeq12d z = x y F 1 st z G 2 nd z = F x G y
14 13 mpompt z A × B F 1 st z G 2 nd z = x A , y B F x G y
15 1 14 eqtr4i H = z A × B F 1 st z G 2 nd z
16 6 15 fnmpti H Fn A × B
17 xpss12 X A Y B X × Y A × B
18 4 5 17 syl2anc φ X × Y A × B
19 fvelimab H Fn A × B X × Y A × B c H X × Y z X × Y H z = c
20 16 18 19 sylancr φ c H X × Y z X × Y H z = c
21 simp-4r φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c a X
22 simplr φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c b Y
23 opelxpi a X b Y a b X × Y
24 21 22 23 syl2anc φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c a b X × Y
25 simpllr φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c F a = 1 st c
26 simpr φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c G b = 2 nd c
27 25 26 opeq12d φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c F a G b = 1 st c 2 nd c
28 4 ad5antr φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c X A
29 28 21 sseldd φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c a A
30 5 ad5antr φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c Y B
31 30 22 sseldd φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c b B
32 1 29 31 fvproj φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c H a b = F a G b
33 1st2nd2 c F X × G Y c = 1 st c 2 nd c
34 33 ad5antlr φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c c = 1 st c 2 nd c
35 27 32 34 3eqtr4d φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c H a b = c
36 fveqeq2 z = a b H z = c H a b = c
37 36 rspcev a b X × Y H a b = c z X × Y H z = c
38 24 35 37 syl2anc φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c z X × Y H z = c
39 3 ad3antrrr φ c F X × G Y a X F a = 1 st c G Fn B
40 fnfun G Fn B Fun G
41 39 40 syl φ c F X × G Y a X F a = 1 st c Fun G
42 xp2nd c F X × G Y 2 nd c G Y
43 42 ad3antlr φ c F X × G Y a X F a = 1 st c 2 nd c G Y
44 fvelima Fun G 2 nd c G Y b Y G b = 2 nd c
45 41 43 44 syl2anc φ c F X × G Y a X F a = 1 st c b Y G b = 2 nd c
46 38 45 r19.29a φ c F X × G Y a X F a = 1 st c z X × Y H z = c
47 2 adantr φ c F X × G Y F Fn A
48 fnfun F Fn A Fun F
49 47 48 syl φ c F X × G Y Fun F
50 xp1st c F X × G Y 1 st c F X
51 50 adantl φ c F X × G Y 1 st c F X
52 fvelima Fun F 1 st c F X a X F a = 1 st c
53 49 51 52 syl2anc φ c F X × G Y a X F a = 1 st c
54 46 53 r19.29a φ c F X × G Y z X × Y H z = c
55 simpr φ z X × Y H z = c H z = c
56 18 ad2antrr φ z X × Y H z = c X × Y A × B
57 simplr φ z X × Y H z = c z X × Y
58 56 57 sseldd φ z X × Y H z = c z A × B
59 15 fvmpt2 z A × B F 1 st z G 2 nd z V H z = F 1 st z G 2 nd z
60 58 6 59 sylancl φ z X × Y H z = c H z = F 1 st z G 2 nd z
61 2 ad2antrr φ z X × Y H z = c F Fn A
62 4 ad2antrr φ z X × Y H z = c X A
63 xp1st z X × Y 1 st z X
64 57 63 syl φ z X × Y H z = c 1 st z X
65 fnfvima F Fn A X A 1 st z X F 1 st z F X
66 61 62 64 65 syl3anc φ z X × Y H z = c F 1 st z F X
67 3 ad2antrr φ z X × Y H z = c G Fn B
68 5 ad2antrr φ z X × Y H z = c Y B
69 xp2nd z X × Y 2 nd z Y
70 57 69 syl φ z X × Y H z = c 2 nd z Y
71 fnfvima G Fn B Y B 2 nd z Y G 2 nd z G Y
72 67 68 70 71 syl3anc φ z X × Y H z = c G 2 nd z G Y
73 opelxpi F 1 st z F X G 2 nd z G Y F 1 st z G 2 nd z F X × G Y
74 66 72 73 syl2anc φ z X × Y H z = c F 1 st z G 2 nd z F X × G Y
75 60 74 eqeltrd φ z X × Y H z = c H z F X × G Y
76 55 75 eqeltrrd φ z X × Y H z = c c F X × G Y
77 76 r19.29an φ z X × Y H z = c c F X × G Y
78 54 77 impbida φ c F X × G Y z X × Y H z = c
79 20 78 bitr4d φ c H X × Y c F X × G Y
80 79 eqrdv φ H X × Y = F X × G Y