Metamath Proof Explorer


Theorem fimin2g

Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020)

Ref Expression
Assertion fimin2g R Or A A Fin A x A y A ¬ y R x

Proof

Step Hyp Ref Expression
1 3simpc R Or A A Fin A A Fin A
2 sopo R Or A R Po A
3 2 3ad2ant1 R Or A A Fin A R Po A
4 simp2 R Or A A Fin A A Fin
5 frfi R Po A A Fin R Fr A
6 3 4 5 syl2anc R Or A A Fin A R Fr A
7 ssid A A
8 fri A Fin R Fr A A A A x A y A ¬ y R x
9 7 8 mpanr1 A Fin R Fr A A x A y A ¬ y R x
10 9 an32s A Fin A R Fr A x A y A ¬ y R x
11 1 6 10 syl2anc R Or A A Fin A x A y A ¬ y R x