Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
fimin2g
Next ⟩
fiming
Metamath Proof Explorer
Ascii
Unicode
Theorem
fimin2g
Description:
A finite set has a minimum under a total order.
(Contributed by
AV
, 6-Oct-2020)
Ref
Expression
Assertion
fimin2g
⊢
R
Or
A
∧
A
∈
Fin
∧
A
≠
∅
→
∃
x
∈
A
∀
y
∈
A
¬
y
R
x
Proof
Step
Hyp
Ref
Expression
1
3simpc
⊢
R
Or
A
∧
A
∈
Fin
∧
A
≠
∅
→
A
∈
Fin
∧
A
≠
∅
2
sopo
⊢
R
Or
A
→
R
Po
A
3
2
3ad2ant1
⊢
R
Or
A
∧
A
∈
Fin
∧
A
≠
∅
→
R
Po
A
4
simp2
⊢
R
Or
A
∧
A
∈
Fin
∧
A
≠
∅
→
A
∈
Fin
5
frfi
⊢
R
Po
A
∧
A
∈
Fin
→
R
Fr
A
6
3
4
5
syl2anc
⊢
R
Or
A
∧
A
∈
Fin
∧
A
≠
∅
→
R
Fr
A
7
ssid
⊢
A
⊆
A
8
fri
⊢
A
∈
Fin
∧
R
Fr
A
∧
A
⊆
A
∧
A
≠
∅
→
∃
x
∈
A
∀
y
∈
A
¬
y
R
x
9
7
8
mpanr1
⊢
A
∈
Fin
∧
R
Fr
A
∧
A
≠
∅
→
∃
x
∈
A
∀
y
∈
A
¬
y
R
x
10
9
an32s
⊢
A
∈
Fin
∧
A
≠
∅
∧
R
Fr
A
→
∃
x
∈
A
∀
y
∈
A
¬
y
R
x
11
1
6
10
syl2anc
⊢
R
Or
A
∧
A
∈
Fin
∧
A
≠
∅
→
∃
x
∈
A
∀
y
∈
A
¬
y
R
x