Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiming | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fimin2g | |
|
| 2 | nesym | |
|
| 3 | 2 | imbi1i | |
| 4 | pm4.64 | |
|
| 5 | 3 4 | bitri | |
| 6 | sotric | |
|
| 7 | 6 | ancom2s | |
| 8 | 7 | con2bid | |
| 9 | 5 8 | bitrid | |
| 10 | 9 | anassrs | |
| 11 | 10 | ralbidva | |
| 12 | 11 | rexbidva | |
| 13 | 12 | 3ad2ant1 | |
| 14 | 1 13 | mpbird | |