Metamath Proof Explorer


Theorem fin12

Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin12 A Fin A FinII

Proof

Step Hyp Ref Expression
1 vex b V
2 1 a1i A Fin b 𝒫 𝒫 A b [⊂] Or b b V
3 isfin1-3 A Fin A Fin [⊂] -1 Fr 𝒫 A
4 3 ibi A Fin [⊂] -1 Fr 𝒫 A
5 4 ad2antrr A Fin b 𝒫 𝒫 A b [⊂] Or b [⊂] -1 Fr 𝒫 A
6 elpwi b 𝒫 𝒫 A b 𝒫 A
7 6 ad2antlr A Fin b 𝒫 𝒫 A b [⊂] Or b b 𝒫 A
8 simprl A Fin b 𝒫 𝒫 A b [⊂] Or b b
9 fri b V [⊂] -1 Fr 𝒫 A b 𝒫 A b c b d b ¬ d [⊂] -1 c
10 2 5 7 8 9 syl22anc A Fin b 𝒫 𝒫 A b [⊂] Or b c b d b ¬ d [⊂] -1 c
11 vex d V
12 vex c V
13 11 12 brcnv d [⊂] -1 c c [⊂] d
14 11 brrpss c [⊂] d c d
15 13 14 bitri d [⊂] -1 c c d
16 15 notbii ¬ d [⊂] -1 c ¬ c d
17 16 ralbii d b ¬ d [⊂] -1 c d b ¬ c d
18 17 rexbii c b d b ¬ d [⊂] -1 c c b d b ¬ c d
19 10 18 sylib A Fin b 𝒫 𝒫 A b [⊂] Or b c b d b ¬ c d
20 sorpssuni [⊂] Or b c b d b ¬ c d b b
21 20 ad2antll A Fin b 𝒫 𝒫 A b [⊂] Or b c b d b ¬ c d b b
22 19 21 mpbid A Fin b 𝒫 𝒫 A b [⊂] Or b b b
23 22 ex A Fin b 𝒫 𝒫 A b [⊂] Or b b b
24 23 ralrimiva A Fin b 𝒫 𝒫 A b [⊂] Or b b b
25 isfin2 A Fin A FinII b 𝒫 𝒫 A b [⊂] Or b b b
26 24 25 mpbird A Fin A FinII