Metamath Proof Explorer


Theorem fin17

Description: Every I-finite set is VII-finite. (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin17 A Fin A FinVII

Proof

Step Hyp Ref Expression
1 eldif b On ω b On ¬ b ω
2 enfi A b A Fin b Fin
3 onfin b On b Fin b ω
4 2 3 sylan9bbr b On A b A Fin b ω
5 4 biimpd b On A b A Fin b ω
6 5 con3d b On A b ¬ b ω ¬ A Fin
7 6 impancom b On ¬ b ω A b ¬ A Fin
8 1 7 sylbi b On ω A b ¬ A Fin
9 8 rexlimiv b On ω A b ¬ A Fin
10 9 con2i A Fin ¬ b On ω A b
11 isfin7 A Fin A FinVII ¬ b On ω A b
12 10 11 mpbird A Fin A FinVII