Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
fin17
Next ⟩
fin67
Metamath Proof Explorer
Ascii
Unicode
Theorem
fin17
Description:
Every I-finite set is VII-finite.
(Contributed by
Mario Carneiro
, 17-May-2015)
Ref
Expression
Assertion
fin17
⊢
A
∈
Fin
→
A
∈
Fin
VII
Proof
Step
Hyp
Ref
Expression
1
eldif
⊢
b
∈
On
∖
ω
↔
b
∈
On
∧
¬
b
∈
ω
2
enfi
⊢
A
≈
b
→
A
∈
Fin
↔
b
∈
Fin
3
onfin
⊢
b
∈
On
→
b
∈
Fin
↔
b
∈
ω
4
2
3
sylan9bbr
⊢
b
∈
On
∧
A
≈
b
→
A
∈
Fin
↔
b
∈
ω
5
4
biimpd
⊢
b
∈
On
∧
A
≈
b
→
A
∈
Fin
→
b
∈
ω
6
5
con3d
⊢
b
∈
On
∧
A
≈
b
→
¬
b
∈
ω
→
¬
A
∈
Fin
7
6
impancom
⊢
b
∈
On
∧
¬
b
∈
ω
→
A
≈
b
→
¬
A
∈
Fin
8
1
7
sylbi
⊢
b
∈
On
∖
ω
→
A
≈
b
→
¬
A
∈
Fin
9
8
rexlimiv
⊢
∃
b
∈
On
∖
ω
A
≈
b
→
¬
A
∈
Fin
10
9
con2i
⊢
A
∈
Fin
→
¬
∃
b
∈
On
∖
ω
A
≈
b
11
isfin7
⊢
A
∈
Fin
→
A
∈
Fin
VII
↔
¬
∃
b
∈
On
∖
ω
A
≈
b
12
10
11
mpbird
⊢
A
∈
Fin
→
A
∈
Fin
VII