Metamath Proof Explorer


Theorem fin1a2

Description: Every Ia-finite set is II-finite. Theorem 1 of Levy58, p. 3. (Contributed by Stefan O'Rear, 8-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin1a2 A FinIa A FinII

Proof

Step Hyp Ref Expression
1 elpwi b 𝒫 A b A
2 fin1ai A FinIa b A b Fin A b Fin
3 fin12 A b Fin A b FinII
4 3 orim2i b Fin A b Fin b Fin A b FinII
5 2 4 syl A FinIa b A b Fin A b FinII
6 1 5 sylan2 A FinIa b 𝒫 A b Fin A b FinII
7 6 ralrimiva A FinIa b 𝒫 A b Fin A b FinII
8 fin1a2s A FinIa b 𝒫 A b Fin A b FinII A FinII
9 7 8 mpdan A FinIa A FinII