Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
fin1a2lem1
Next ⟩
fin1a2lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fin1a2lem1
Description:
Lemma for
fin1a2
.
(Contributed by
Stefan O'Rear
, 7-Nov-2014)
Ref
Expression
Hypothesis
fin1a2lem.a
⊢
S
=
x
∈
On
⟼
suc
⁡
x
Assertion
fin1a2lem1
⊢
A
∈
On
→
S
⁡
A
=
suc
⁡
A
Proof
Step
Hyp
Ref
Expression
1
fin1a2lem.a
⊢
S
=
x
∈
On
⟼
suc
⁡
x
2
suceloni
⊢
A
∈
On
→
suc
⁡
A
∈
On
3
suceq
⊢
a
=
A
→
suc
⁡
a
=
suc
⁡
A
4
suceq
⊢
x
=
a
→
suc
⁡
x
=
suc
⁡
a
5
4
cbvmptv
⊢
x
∈
On
⟼
suc
⁡
x
=
a
∈
On
⟼
suc
⁡
a
6
1
5
eqtri
⊢
S
=
a
∈
On
⟼
suc
⁡
a
7
3
6
fvmptg
⊢
A
∈
On
∧
suc
⁡
A
∈
On
→
S
⁡
A
=
suc
⁡
A
8
2
7
mpdan
⊢
A
∈
On
→
S
⁡
A
=
suc
⁡
A