Metamath Proof Explorer


Theorem fin1a2lem1

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis fin1a2lem.a S = x On suc x
Assertion fin1a2lem1 A On S A = suc A

Proof

Step Hyp Ref Expression
1 fin1a2lem.a S = x On suc x
2 suceloni A On suc A On
3 suceq a = A suc a = suc A
4 suceq x = a suc x = suc a
5 4 cbvmptv x On suc x = a On suc a
6 1 5 eqtri S = a On suc a
7 3 6 fvmptg A On suc A On S A = suc A
8 2 7 mpdan A On S A = suc A