Step |
Hyp |
Ref |
Expression |
1 |
|
eqneqall |
|
2 |
|
tru |
|
3 |
2
|
a1i |
|
4 |
1 3
|
2thd |
|
5 |
|
neeq1 |
|
6 |
|
soeq2 |
|
7 |
|
unieq |
|
8 |
|
id |
|
9 |
7 8
|
eleq12d |
|
10 |
6 9
|
imbi12d |
|
11 |
5 10
|
imbi12d |
|
12 |
|
neeq1 |
|
13 |
|
soeq2 |
|
14 |
|
unieq |
|
15 |
|
id |
|
16 |
14 15
|
eleq12d |
|
17 |
13 16
|
imbi12d |
|
18 |
12 17
|
imbi12d |
|
19 |
|
neeq1 |
|
20 |
|
soeq2 |
|
21 |
|
unieq |
|
22 |
|
id |
|
23 |
21 22
|
eleq12d |
|
24 |
20 23
|
imbi12d |
|
25 |
19 24
|
imbi12d |
|
26 |
|
vex |
|
27 |
26
|
unisn |
|
28 |
|
vsnid |
|
29 |
27 28
|
eqeltri |
|
30 |
|
uneq1 |
|
31 |
|
uncom |
|
32 |
|
un0 |
|
33 |
31 32
|
eqtri |
|
34 |
30 33
|
eqtrdi |
|
35 |
34
|
unieqd |
|
36 |
35 34
|
eleq12d |
|
37 |
29 36
|
mpbiri |
|
38 |
37
|
a1d |
|
39 |
38
|
adantl |
|
40 |
|
simpr |
|
41 |
|
ssun1 |
|
42 |
|
simpl2 |
|
43 |
|
soss |
|
44 |
41 42 43
|
mpsyl |
|
45 |
|
uniun |
|
46 |
27
|
uneq2i |
|
47 |
45 46
|
eqtri |
|
48 |
|
simprr |
|
49 |
|
simpl2 |
|
50 |
|
elun1 |
|
51 |
50
|
ad2antll |
|
52 |
|
ssun2 |
|
53 |
52 28
|
sselii |
|
54 |
53
|
a1i |
|
55 |
|
sorpssi |
|
56 |
49 51 54 55
|
syl12anc |
|
57 |
|
ssequn1 |
|
58 |
53
|
a1i |
|
59 |
|
eleq1 |
|
60 |
58 59
|
syl5ibr |
|
61 |
57 60
|
sylbi |
|
62 |
61
|
impcom |
|
63 |
|
uncom |
|
64 |
|
ssequn1 |
|
65 |
|
eleq1 |
|
66 |
50 65
|
syl5ibr |
|
67 |
64 66
|
sylbi |
|
68 |
67
|
impcom |
|
69 |
63 68
|
eqeltrid |
|
70 |
62 69
|
jaodan |
|
71 |
48 56 70
|
syl2anc |
|
72 |
47 71
|
eqeltrid |
|
73 |
72
|
expr |
|
74 |
44 73
|
embantd |
|
75 |
40 74
|
embantd |
|
76 |
39 75
|
pm2.61dane |
|
77 |
76
|
3exp |
|
78 |
77
|
com24 |
|
79 |
4 11 18 25 2 78
|
findcard2 |
|
80 |
79
|
3imp21 |
|