Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
1
|
rnmpt |
|
3 |
|
unieq |
|
4 |
|
uni0 |
|
5 |
3 4
|
eqtrdi |
|
6 |
5
|
adantl |
|
7 |
|
0ex |
|
8 |
7
|
elsn2 |
|
9 |
6 8
|
sylibr |
|
10 |
9
|
olcd |
|
11 |
|
ssrab2 |
|
12 |
|
simpr |
|
13 |
|
fin1a2lem9 |
|
14 |
13
|
ad4ant123 |
|
15 |
|
simplll |
|
16 |
|
soss |
|
17 |
11 15 16
|
mpsyl |
|
18 |
|
fin1a2lem10 |
|
19 |
12 14 17 18
|
syl3anc |
|
20 |
11 19
|
sselid |
|
21 |
20
|
orcd |
|
22 |
10 21
|
pm2.61dane |
|
23 |
|
eleq1 |
|
24 |
|
eleq1 |
|
25 |
23 24
|
orbi12d |
|
26 |
22 25
|
syl5ibrcom |
|
27 |
26
|
rexlimdva |
|
28 |
|
simpr |
|
29 |
28
|
sselda |
|
30 |
|
ficardom |
|
31 |
29 30
|
syl |
|
32 |
|
breq1 |
|
33 |
|
simpr |
|
34 |
|
ficardid |
|
35 |
29 34
|
syl |
|
36 |
|
ensym |
|
37 |
|
endom |
|
38 |
35 36 37
|
3syl |
|
39 |
32 33 38
|
elrabd |
|
40 |
|
elssuni |
|
41 |
39 40
|
syl |
|
42 |
|
breq1 |
|
43 |
42
|
elrab |
|
44 |
|
simprr |
|
45 |
35
|
adantr |
|
46 |
|
domentr |
|
47 |
44 45 46
|
syl2anc |
|
48 |
|
simpllr |
|
49 |
|
simprl |
|
50 |
48 49
|
sseldd |
|
51 |
29
|
adantr |
|
52 |
|
simplll |
|
53 |
|
simplr |
|
54 |
|
sorpssi |
|
55 |
52 49 53 54
|
syl12anc |
|
56 |
|
fincssdom |
|
57 |
50 51 55 56
|
syl3anc |
|
58 |
47 57
|
mpbid |
|
59 |
58
|
ex |
|
60 |
43 59
|
syl5bi |
|
61 |
60
|
ralrimiv |
|
62 |
|
unissb |
|
63 |
61 62
|
sylibr |
|
64 |
41 63
|
eqssd |
|
65 |
|
breq2 |
|
66 |
65
|
rabbidv |
|
67 |
66
|
unieqd |
|
68 |
67
|
rspceeqv |
|
69 |
31 64 68
|
syl2anc |
|
70 |
69
|
ex |
|
71 |
|
velsn |
|
72 |
|
peano1 |
|
73 |
|
dom0 |
|
74 |
73
|
biimpi |
|
75 |
74
|
adantl |
|
76 |
75
|
a1i |
|
77 |
|
breq1 |
|
78 |
77
|
elrab |
|
79 |
|
velsn |
|
80 |
76 78 79
|
3imtr4g |
|
81 |
80
|
ssrdv |
|
82 |
|
uni0b |
|
83 |
81 82
|
sylibr |
|
84 |
83
|
eqcomd |
|
85 |
|
breq2 |
|
86 |
85
|
rabbidv |
|
87 |
86
|
unieqd |
|
88 |
87
|
rspceeqv |
|
89 |
72 84 88
|
sylancr |
|
90 |
|
eqeq1 |
|
91 |
90
|
rexbidv |
|
92 |
89 91
|
syl5ibrcom |
|
93 |
71 92
|
syl5bi |
|
94 |
70 93
|
jaod |
|
95 |
27 94
|
impbid |
|
96 |
|
elun |
|
97 |
95 96
|
bitr4di |
|
98 |
97
|
abbi1dv |
|
99 |
2 98
|
eqtrid |
|