| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  | 
						
							| 2 | 1 | rnmpt |  | 
						
							| 3 |  | unieq |  | 
						
							| 4 |  | uni0 |  | 
						
							| 5 | 3 4 | eqtrdi |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | 0ex |  | 
						
							| 8 | 7 | elsn2 |  | 
						
							| 9 | 6 8 | sylibr |  | 
						
							| 10 | 9 | olcd |  | 
						
							| 11 |  | ssrab2 |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 |  | fin1a2lem9 |  | 
						
							| 14 | 13 | ad4ant123 |  | 
						
							| 15 |  | simplll |  | 
						
							| 16 |  | soss |  | 
						
							| 17 | 11 15 16 | mpsyl |  | 
						
							| 18 |  | fin1a2lem10 |  | 
						
							| 19 | 12 14 17 18 | syl3anc |  | 
						
							| 20 | 11 19 | sselid |  | 
						
							| 21 | 20 | orcd |  | 
						
							| 22 | 10 21 | pm2.61dane |  | 
						
							| 23 |  | eleq1 |  | 
						
							| 24 |  | eleq1 |  | 
						
							| 25 | 23 24 | orbi12d |  | 
						
							| 26 | 22 25 | syl5ibrcom |  | 
						
							| 27 | 26 | rexlimdva |  | 
						
							| 28 |  | simpr |  | 
						
							| 29 | 28 | sselda |  | 
						
							| 30 |  | ficardom |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 |  | breq1 |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 |  | ficardid |  | 
						
							| 35 | 29 34 | syl |  | 
						
							| 36 |  | ensym |  | 
						
							| 37 |  | endom |  | 
						
							| 38 | 35 36 37 | 3syl |  | 
						
							| 39 | 32 33 38 | elrabd |  | 
						
							| 40 |  | elssuni |  | 
						
							| 41 | 39 40 | syl |  | 
						
							| 42 |  | breq1 |  | 
						
							| 43 | 42 | elrab |  | 
						
							| 44 |  | simprr |  | 
						
							| 45 | 35 | adantr |  | 
						
							| 46 |  | domentr |  | 
						
							| 47 | 44 45 46 | syl2anc |  | 
						
							| 48 |  | simpllr |  | 
						
							| 49 |  | simprl |  | 
						
							| 50 | 48 49 | sseldd |  | 
						
							| 51 | 29 | adantr |  | 
						
							| 52 |  | simplll |  | 
						
							| 53 |  | simplr |  | 
						
							| 54 |  | sorpssi |  | 
						
							| 55 | 52 49 53 54 | syl12anc |  | 
						
							| 56 |  | fincssdom |  | 
						
							| 57 | 50 51 55 56 | syl3anc |  | 
						
							| 58 | 47 57 | mpbid |  | 
						
							| 59 | 58 | ex |  | 
						
							| 60 | 43 59 | biimtrid |  | 
						
							| 61 | 60 | ralrimiv |  | 
						
							| 62 |  | unissb |  | 
						
							| 63 | 61 62 | sylibr |  | 
						
							| 64 | 41 63 | eqssd |  | 
						
							| 65 |  | breq2 |  | 
						
							| 66 | 65 | rabbidv |  | 
						
							| 67 | 66 | unieqd |  | 
						
							| 68 | 67 | rspceeqv |  | 
						
							| 69 | 31 64 68 | syl2anc |  | 
						
							| 70 | 69 | ex |  | 
						
							| 71 |  | velsn |  | 
						
							| 72 |  | peano1 |  | 
						
							| 73 |  | dom0 |  | 
						
							| 74 | 73 | biimpi |  | 
						
							| 75 | 74 | adantl |  | 
						
							| 76 | 75 | a1i |  | 
						
							| 77 |  | breq1 |  | 
						
							| 78 | 77 | elrab |  | 
						
							| 79 |  | velsn |  | 
						
							| 80 | 76 78 79 | 3imtr4g |  | 
						
							| 81 | 80 | ssrdv |  | 
						
							| 82 |  | uni0b |  | 
						
							| 83 | 81 82 | sylibr |  | 
						
							| 84 | 83 | eqcomd |  | 
						
							| 85 |  | breq2 |  | 
						
							| 86 | 85 | rabbidv |  | 
						
							| 87 | 86 | unieqd |  | 
						
							| 88 | 87 | rspceeqv |  | 
						
							| 89 | 72 84 88 | sylancr |  | 
						
							| 90 |  | eqeq1 |  | 
						
							| 91 | 90 | rexbidv |  | 
						
							| 92 | 89 91 | syl5ibrcom |  | 
						
							| 93 | 71 92 | biimtrid |  | 
						
							| 94 | 70 93 | jaod |  | 
						
							| 95 | 27 94 | impbid |  | 
						
							| 96 |  | elun |  | 
						
							| 97 | 95 96 | bitr4di |  | 
						
							| 98 | 97 | eqabcdv |  | 
						
							| 99 | 2 98 | eqtrid |  |