Metamath Proof Explorer


Theorem fin1a2lem11

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014)

Ref Expression
Assertion fin1a2lem11 [⊂] Or A A Fin ran b ω c A | c b = A

Proof

Step Hyp Ref Expression
1 eqid b ω c A | c b = b ω c A | c b
2 1 rnmpt ran b ω c A | c b = d | b ω d = c A | c b
3 unieq c A | c b = c A | c b =
4 uni0 =
5 3 4 eqtrdi c A | c b = c A | c b =
6 5 adantl [⊂] Or A A Fin b ω c A | c b = c A | c b =
7 0ex V
8 7 elsn2 c A | c b c A | c b =
9 6 8 sylibr [⊂] Or A A Fin b ω c A | c b = c A | c b
10 9 olcd [⊂] Or A A Fin b ω c A | c b = c A | c b A c A | c b
11 ssrab2 c A | c b A
12 simpr [⊂] Or A A Fin b ω c A | c b c A | c b
13 fin1a2lem9 [⊂] Or A A Fin b ω c A | c b Fin
14 13 ad4ant123 [⊂] Or A A Fin b ω c A | c b c A | c b Fin
15 simplll [⊂] Or A A Fin b ω c A | c b [⊂] Or A
16 soss c A | c b A [⊂] Or A [⊂] Or c A | c b
17 11 15 16 mpsyl [⊂] Or A A Fin b ω c A | c b [⊂] Or c A | c b
18 fin1a2lem10 c A | c b c A | c b Fin [⊂] Or c A | c b c A | c b c A | c b
19 12 14 17 18 syl3anc [⊂] Or A A Fin b ω c A | c b c A | c b c A | c b
20 11 19 sselid [⊂] Or A A Fin b ω c A | c b c A | c b A
21 20 orcd [⊂] Or A A Fin b ω c A | c b c A | c b A c A | c b
22 10 21 pm2.61dane [⊂] Or A A Fin b ω c A | c b A c A | c b
23 eleq1 d = c A | c b d A c A | c b A
24 eleq1 d = c A | c b d c A | c b
25 23 24 orbi12d d = c A | c b d A d c A | c b A c A | c b
26 22 25 syl5ibrcom [⊂] Or A A Fin b ω d = c A | c b d A d
27 26 rexlimdva [⊂] Or A A Fin b ω d = c A | c b d A d
28 simpr [⊂] Or A A Fin A Fin
29 28 sselda [⊂] Or A A Fin d A d Fin
30 ficardom d Fin card d ω
31 29 30 syl [⊂] Or A A Fin d A card d ω
32 breq1 c = d c card d d card d
33 simpr [⊂] Or A A Fin d A d A
34 ficardid d Fin card d d
35 29 34 syl [⊂] Or A A Fin d A card d d
36 ensym card d d d card d
37 endom d card d d card d
38 35 36 37 3syl [⊂] Or A A Fin d A d card d
39 32 33 38 elrabd [⊂] Or A A Fin d A d c A | c card d
40 elssuni d c A | c card d d c A | c card d
41 39 40 syl [⊂] Or A A Fin d A d c A | c card d
42 breq1 c = b c card d b card d
43 42 elrab b c A | c card d b A b card d
44 simprr [⊂] Or A A Fin d A b A b card d b card d
45 35 adantr [⊂] Or A A Fin d A b A b card d card d d
46 domentr b card d card d d b d
47 44 45 46 syl2anc [⊂] Or A A Fin d A b A b card d b d
48 simpllr [⊂] Or A A Fin d A b A b card d A Fin
49 simprl [⊂] Or A A Fin d A b A b card d b A
50 48 49 sseldd [⊂] Or A A Fin d A b A b card d b Fin
51 29 adantr [⊂] Or A A Fin d A b A b card d d Fin
52 simplll [⊂] Or A A Fin d A b A b card d [⊂] Or A
53 simplr [⊂] Or A A Fin d A b A b card d d A
54 sorpssi [⊂] Or A b A d A b d d b
55 52 49 53 54 syl12anc [⊂] Or A A Fin d A b A b card d b d d b
56 fincssdom b Fin d Fin b d d b b d b d
57 50 51 55 56 syl3anc [⊂] Or A A Fin d A b A b card d b d b d
58 47 57 mpbid [⊂] Or A A Fin d A b A b card d b d
59 58 ex [⊂] Or A A Fin d A b A b card d b d
60 43 59 syl5bi [⊂] Or A A Fin d A b c A | c card d b d
61 60 ralrimiv [⊂] Or A A Fin d A b c A | c card d b d
62 unissb c A | c card d d b c A | c card d b d
63 61 62 sylibr [⊂] Or A A Fin d A c A | c card d d
64 41 63 eqssd [⊂] Or A A Fin d A d = c A | c card d
65 breq2 b = card d c b c card d
66 65 rabbidv b = card d c A | c b = c A | c card d
67 66 unieqd b = card d c A | c b = c A | c card d
68 67 rspceeqv card d ω d = c A | c card d b ω d = c A | c b
69 31 64 68 syl2anc [⊂] Or A A Fin d A b ω d = c A | c b
70 69 ex [⊂] Or A A Fin d A b ω d = c A | c b
71 velsn d d =
72 peano1 ω
73 dom0 b b =
74 73 biimpi b b =
75 74 adantl b A b b =
76 75 a1i [⊂] Or A A Fin b A b b =
77 breq1 c = b c b
78 77 elrab b c A | c b A b
79 velsn b b =
80 76 78 79 3imtr4g [⊂] Or A A Fin b c A | c b
81 80 ssrdv [⊂] Or A A Fin c A | c
82 uni0b c A | c = c A | c
83 81 82 sylibr [⊂] Or A A Fin c A | c =
84 83 eqcomd [⊂] Or A A Fin = c A | c
85 breq2 b = c b c
86 85 rabbidv b = c A | c b = c A | c
87 86 unieqd b = c A | c b = c A | c
88 87 rspceeqv ω = c A | c b ω = c A | c b
89 72 84 88 sylancr [⊂] Or A A Fin b ω = c A | c b
90 eqeq1 d = d = c A | c b = c A | c b
91 90 rexbidv d = b ω d = c A | c b b ω = c A | c b
92 89 91 syl5ibrcom [⊂] Or A A Fin d = b ω d = c A | c b
93 71 92 syl5bi [⊂] Or A A Fin d b ω d = c A | c b
94 70 93 jaod [⊂] Or A A Fin d A d b ω d = c A | c b
95 27 94 impbid [⊂] Or A A Fin b ω d = c A | c b d A d
96 elun d A d A d
97 95 96 bitr4di [⊂] Or A A Fin b ω d = c A | c b d A
98 97 abbi1dv [⊂] Or A A Fin d | b ω d = c A | c b = A
99 2 98 eqtrid [⊂] Or A A Fin ran b ω c A | c b = A