Metamath Proof Explorer


Theorem fin1a2lem12

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin1a2lem12 A 𝒫 B [⊂] Or A ¬ A A A Fin A ¬ B FinIII

Proof

Step Hyp Ref Expression
1 simpr A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII B FinIII
2 simpll1 A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII A 𝒫 B
3 2 adantr A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII e ω A 𝒫 B
4 ssrab2 f A | f e A
5 4 unissi f A | f e A
6 sspwuni A 𝒫 B A B
7 6 biimpi A 𝒫 B A B
8 5 7 sstrid A 𝒫 B f A | f e B
9 3 8 syl A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII e ω f A | f e B
10 elpw2g B FinIII f A | f e 𝒫 B f A | f e B
11 10 ad2antlr A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII e ω f A | f e 𝒫 B f A | f e B
12 9 11 mpbird A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII e ω f A | f e 𝒫 B
13 12 fmpttd A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII e ω f A | f e : ω 𝒫 B
14 vex d V
15 14 sucex suc d V
16 sssucid d suc d
17 ssdomg suc d V d suc d d suc d
18 15 16 17 mp2 d suc d
19 domtr f d d suc d f suc d
20 18 19 mpan2 f d f suc d
21 20 a1i f A f d f suc d
22 21 ss2rabi f A | f d f A | f suc d
23 uniss f A | f d f A | f suc d f A | f d f A | f suc d
24 22 23 mp1i A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII d ω f A | f d f A | f suc d
25 id d ω d ω
26 pwexg B FinIII 𝒫 B V
27 26 adantl A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII 𝒫 B V
28 27 2 ssexd A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII A V
29 rabexg A V f A | f d V
30 uniexg f A | f d V f A | f d V
31 28 29 30 3syl A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII f A | f d V
32 breq2 e = d f e f d
33 32 rabbidv e = d f A | f e = f A | f d
34 33 unieqd e = d f A | f e = f A | f d
35 eqid e ω f A | f e = e ω f A | f e
36 34 35 fvmptg d ω f A | f d V e ω f A | f e d = f A | f d
37 25 31 36 syl2anr A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII d ω e ω f A | f e d = f A | f d
38 peano2 d ω suc d ω
39 rabexg A V f A | f suc d V
40 uniexg f A | f suc d V f A | f suc d V
41 28 39 40 3syl A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII f A | f suc d V
42 breq2 e = suc d f e f suc d
43 42 rabbidv e = suc d f A | f e = f A | f suc d
44 43 unieqd e = suc d f A | f e = f A | f suc d
45 44 35 fvmptg suc d ω f A | f suc d V e ω f A | f e suc d = f A | f suc d
46 38 41 45 syl2anr A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII d ω e ω f A | f e suc d = f A | f suc d
47 24 37 46 3sstr4d A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII d ω e ω f A | f e d e ω f A | f e suc d
48 47 ralrimiva A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII d ω e ω f A | f e d e ω f A | f e suc d
49 fin34i B FinIII e ω f A | f e : ω 𝒫 B d ω e ω f A | f e d e ω f A | f e suc d ran e ω f A | f e ran e ω f A | f e
50 1 13 48 49 syl3anc A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII ran e ω f A | f e ran e ω f A | f e
51 fin1a2lem11 [⊂] Or A A Fin ran e ω f A | f e = A
52 51 adantrr [⊂] Or A A Fin A ran e ω f A | f e = A
53 52 3ad2antl2 A 𝒫 B [⊂] Or A ¬ A A A Fin A ran e ω f A | f e = A
54 53 adantr A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII ran e ω f A | f e = A
55 simpll3 A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII ¬ A A
56 simplrr A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII A
57 sspwuni A 𝒫 A
58 ss0b A A =
59 57 58 bitri A 𝒫 A =
60 pw0 𝒫 =
61 60 sseq2i A 𝒫 A
62 sssn A A = A =
63 61 62 bitri A 𝒫 A = A =
64 df-ne A ¬ A =
65 0ex V
66 65 unisn =
67 65 snid
68 66 67 eqeltri
69 unieq A = A =
70 id A = A =
71 69 70 eleq12d A = A A
72 68 71 mpbiri A = A A
73 72 orim2i A = A = A = A A
74 73 ord A = A = ¬ A = A A
75 64 74 syl5bi A = A = A A A
76 63 75 sylbi A 𝒫 A A A
77 59 76 sylbir A = A A A
78 77 com12 A A = A A
79 78 con3d A ¬ A A ¬ A =
80 56 55 79 sylc A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII ¬ A =
81 ioran ¬ A A A = ¬ A A ¬ A =
82 55 80 81 sylanbrc A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII ¬ A A A =
83 uniun A = A
84 66 uneq2i A = A
85 un0 A = A
86 83 84 85 3eqtri A = A
87 86 eleq1i A A A A
88 elun A A A A A
89 65 elsn2 A A =
90 89 orbi2i A A A A A A =
91 87 88 90 3bitri A A A A A =
92 82 91 sylnibr A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII ¬ A A
93 unieq ran e ω f A | f e = A ran e ω f A | f e = A
94 id ran e ω f A | f e = A ran e ω f A | f e = A
95 93 94 eleq12d ran e ω f A | f e = A ran e ω f A | f e ran e ω f A | f e A A
96 95 notbid ran e ω f A | f e = A ¬ ran e ω f A | f e ran e ω f A | f e ¬ A A
97 92 96 syl5ibrcom A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII ran e ω f A | f e = A ¬ ran e ω f A | f e ran e ω f A | f e
98 54 97 mpd A 𝒫 B [⊂] Or A ¬ A A A Fin A B FinIII ¬ ran e ω f A | f e ran e ω f A | f e
99 50 98 pm2.65da A 𝒫 B [⊂] Or A ¬ A A A Fin A ¬ B FinIII