Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
simpll1 |
|
3 |
|
ssel2 |
|
4 |
3
|
elpwid |
|
5 |
4
|
ssdifd |
|
6 |
|
sseq1 |
|
7 |
5 6
|
syl5ibrcom |
|
8 |
7
|
rexlimdva |
|
9 |
|
eqid |
|
10 |
9
|
elrnmpt |
|
11 |
10
|
elv |
|
12 |
|
velpw |
|
13 |
8 11 12
|
3imtr4g |
|
14 |
13
|
ssrdv |
|
15 |
2 14
|
syl |
|
16 |
|
simplrr |
|
17 |
|
difid |
|
18 |
17
|
eqcomi |
|
19 |
|
difeq1 |
|
20 |
19
|
rspceeqv |
|
21 |
18 20
|
mpan2 |
|
22 |
|
0ex |
|
23 |
9
|
elrnmpt |
|
24 |
22 23
|
ax-mp |
|
25 |
21 24
|
sylibr |
|
26 |
|
ne0i |
|
27 |
16 25 26
|
3syl |
|
28 |
|
simpll2 |
|
29 |
9
|
elrnmpt |
|
30 |
29
|
elv |
|
31 |
|
difeq1 |
|
32 |
31
|
eqeq2d |
|
33 |
32
|
cbvrexvw |
|
34 |
|
sorpssi |
|
35 |
|
ssdif |
|
36 |
|
ssdif |
|
37 |
35 36
|
orim12i |
|
38 |
34 37
|
syl |
|
39 |
|
sseq2 |
|
40 |
|
sseq1 |
|
41 |
39 40
|
orbi12d |
|
42 |
38 41
|
syl5ibrcom |
|
43 |
42
|
expr |
|
44 |
43
|
rexlimdv |
|
45 |
11 44
|
syl5bi |
|
46 |
45
|
ralrimiv |
|
47 |
|
sseq1 |
|
48 |
|
sseq2 |
|
49 |
47 48
|
orbi12d |
|
50 |
49
|
ralbidv |
|
51 |
46 50
|
syl5ibrcom |
|
52 |
51
|
rexlimdva |
|
53 |
33 52
|
syl5bi |
|
54 |
30 53
|
syl5bi |
|
55 |
54
|
ralrimiv |
|
56 |
|
sorpss |
|
57 |
55 56
|
sylibr |
|
58 |
28 57
|
syl |
|
59 |
|
fin2i |
|
60 |
1 15 27 58 59
|
syl22anc |
|
61 |
|
simpll3 |
|
62 |
|
difeq1 |
|
63 |
62
|
cbvmptv |
|
64 |
63
|
elrnmpt |
|
65 |
64
|
ibi |
|
66 |
|
eqid |
|
67 |
|
difeq1 |
|
68 |
67
|
rspceeqv |
|
69 |
66 68
|
mpan2 |
|
70 |
69
|
adantl |
|
71 |
|
vex |
|
72 |
|
difexg |
|
73 |
9
|
elrnmpt |
|
74 |
71 72 73
|
mp2b |
|
75 |
70 74
|
sylibr |
|
76 |
|
elssuni |
|
77 |
75 76
|
syl |
|
78 |
|
simplr |
|
79 |
77 78
|
sseqtrd |
|
80 |
79
|
adantll |
|
81 |
|
unss2 |
|
82 |
|
uncom |
|
83 |
|
undif1 |
|
84 |
82 83
|
eqtri |
|
85 |
84
|
a1i |
|
86 |
61
|
ad2antrr |
|
87 |
16
|
ad2antrr |
|
88 |
|
simplrr |
|
89 |
|
eqeq1 |
|
90 |
|
simpllr |
|
91 |
|
ssdif0 |
|
92 |
91
|
biimpi |
|
93 |
92
|
ad2antlr |
|
94 |
90 93
|
eqtrd |
|
95 |
|
uni0c |
|
96 |
94 95
|
sylib |
|
97 |
|
eqid |
|
98 |
|
difeq1 |
|
99 |
98
|
rspceeqv |
|
100 |
97 99
|
mpan2 |
|
101 |
|
vex |
|
102 |
|
difexg |
|
103 |
9
|
elrnmpt |
|
104 |
101 102 103
|
mp2b |
|
105 |
100 104
|
sylibr |
|
106 |
105
|
adantl |
|
107 |
89 96 106
|
rspcdva |
|
108 |
|
ssdif0 |
|
109 |
107 108
|
sylibr |
|
110 |
109
|
ralrimiva |
|
111 |
|
unissb |
|
112 |
110 111
|
sylibr |
|
113 |
|
elssuni |
|
114 |
113
|
ad2antrr |
|
115 |
112 114
|
eqssd |
|
116 |
|
simpll |
|
117 |
115 116
|
eqeltrd |
|
118 |
117
|
ex |
|
119 |
87 88 118
|
syl2anc |
|
120 |
86 119
|
mtod |
|
121 |
28
|
ad2antrr |
|
122 |
|
simplrl |
|
123 |
|
sorpssi |
|
124 |
121 122 87 123
|
syl12anc |
|
125 |
|
orel1 |
|
126 |
120 124 125
|
sylc |
|
127 |
|
undif |
|
128 |
126 127
|
sylib |
|
129 |
85 128
|
sseq12d |
|
130 |
|
ssun1 |
|
131 |
|
sstr |
|
132 |
130 131
|
mpan |
|
133 |
129 132
|
syl6bi |
|
134 |
81 133
|
syl5 |
|
135 |
80 134
|
mpd |
|
136 |
135
|
ralrimiva |
|
137 |
|
unissb |
|
138 |
136 137
|
sylibr |
|
139 |
|
elssuni |
|
140 |
139
|
ad2antrl |
|
141 |
138 140
|
eqssd |
|
142 |
|
simprl |
|
143 |
141 142
|
eqeltrd |
|
144 |
143
|
rexlimdvaa |
|
145 |
65 144
|
syl5 |
|
146 |
61 145
|
mtod |
|
147 |
60 146
|
pm2.65da |
|