Metamath Proof Explorer


Theorem fin1a2lem13

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin1a2lem13 A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A ¬ B C FinII

Proof

Step Hyp Ref Expression
1 simpr A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII B C FinII
2 simpll1 A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII A 𝒫 B
3 ssel2 A 𝒫 B g A g 𝒫 B
4 3 elpwid A 𝒫 B g A g B
5 4 ssdifd A 𝒫 B g A g C B C
6 sseq1 f = g C f B C g C B C
7 5 6 syl5ibrcom A 𝒫 B g A f = g C f B C
8 7 rexlimdva A 𝒫 B g A f = g C f B C
9 eqid g A g C = g A g C
10 9 elrnmpt f V f ran g A g C g A f = g C
11 10 elv f ran g A g C g A f = g C
12 velpw f 𝒫 B C f B C
13 8 11 12 3imtr4g A 𝒫 B f ran g A g C f 𝒫 B C
14 13 ssrdv A 𝒫 B ran g A g C 𝒫 B C
15 2 14 syl A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII ran g A g C 𝒫 B C
16 simplrr A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII C A
17 difid C C =
18 17 eqcomi = C C
19 difeq1 g = C g C = C C
20 19 rspceeqv C A = C C g A = g C
21 18 20 mpan2 C A g A = g C
22 0ex V
23 9 elrnmpt V ran g A g C g A = g C
24 22 23 ax-mp ran g A g C g A = g C
25 21 24 sylibr C A ran g A g C
26 ne0i ran g A g C ran g A g C
27 16 25 26 3syl A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII ran g A g C
28 simpll2 A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII [⊂] Or A
29 9 elrnmpt x V x ran g A g C g A x = g C
30 29 elv x ran g A g C g A x = g C
31 difeq1 g = e g C = e C
32 31 eqeq2d g = e x = g C x = e C
33 32 cbvrexvw g A x = g C e A x = e C
34 sorpssi [⊂] Or A e A g A e g g e
35 ssdif e g e C g C
36 ssdif g e g C e C
37 35 36 orim12i e g g e e C g C g C e C
38 34 37 syl [⊂] Or A e A g A e C g C g C e C
39 sseq2 f = g C e C f e C g C
40 sseq1 f = g C f e C g C e C
41 39 40 orbi12d f = g C e C f f e C e C g C g C e C
42 38 41 syl5ibrcom [⊂] Or A e A g A f = g C e C f f e C
43 42 expr [⊂] Or A e A g A f = g C e C f f e C
44 43 rexlimdv [⊂] Or A e A g A f = g C e C f f e C
45 11 44 syl5bi [⊂] Or A e A f ran g A g C e C f f e C
46 45 ralrimiv [⊂] Or A e A f ran g A g C e C f f e C
47 sseq1 x = e C x f e C f
48 sseq2 x = e C f x f e C
49 47 48 orbi12d x = e C x f f x e C f f e C
50 49 ralbidv x = e C f ran g A g C x f f x f ran g A g C e C f f e C
51 46 50 syl5ibrcom [⊂] Or A e A x = e C f ran g A g C x f f x
52 51 rexlimdva [⊂] Or A e A x = e C f ran g A g C x f f x
53 33 52 syl5bi [⊂] Or A g A x = g C f ran g A g C x f f x
54 30 53 syl5bi [⊂] Or A x ran g A g C f ran g A g C x f f x
55 54 ralrimiv [⊂] Or A x ran g A g C f ran g A g C x f f x
56 sorpss [⊂] Or ran g A g C x ran g A g C f ran g A g C x f f x
57 55 56 sylibr [⊂] Or A [⊂] Or ran g A g C
58 28 57 syl A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII [⊂] Or ran g A g C
59 fin2i B C FinII ran g A g C 𝒫 B C ran g A g C [⊂] Or ran g A g C ran g A g C ran g A g C
60 1 15 27 58 59 syl22anc A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII ran g A g C ran g A g C
61 simpll3 A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII ¬ A A
62 difeq1 g = f g C = f C
63 62 cbvmptv g A g C = f A f C
64 63 elrnmpt ran g A g C ran g A g C ran g A g C ran g A g C f A ran g A g C = f C
65 64 ibi ran g A g C ran g A g C f A ran g A g C = f C
66 eqid h C = h C
67 difeq1 g = h g C = h C
68 67 rspceeqv h A h C = h C g A h C = g C
69 66 68 mpan2 h A g A h C = g C
70 69 adantl f A ran g A g C = f C h A g A h C = g C
71 vex h V
72 difexg h V h C V
73 9 elrnmpt h C V h C ran g A g C g A h C = g C
74 71 72 73 mp2b h C ran g A g C g A h C = g C
75 70 74 sylibr f A ran g A g C = f C h A h C ran g A g C
76 elssuni h C ran g A g C h C ran g A g C
77 75 76 syl f A ran g A g C = f C h A h C ran g A g C
78 simplr f A ran g A g C = f C h A ran g A g C = f C
79 77 78 sseqtrd f A ran g A g C = f C h A h C f C
80 79 adantll A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A h C f C
81 unss2 h C f C C h C C f C
82 uncom C h C = h C C
83 undif1 h C C = h C
84 82 83 eqtri C h C = h C
85 84 a1i A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A C h C = h C
86 61 ad2antrr A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A ¬ A A
87 16 ad2antrr A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A C A
88 simplrr A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A ran g A g C = f C
89 eqeq1 e = x C e = x C =
90 simpllr C A ran g A g C = f C f C x A ran g A g C = f C
91 ssdif0 f C f C =
92 91 biimpi f C f C =
93 92 ad2antlr C A ran g A g C = f C f C x A f C =
94 90 93 eqtrd C A ran g A g C = f C f C x A ran g A g C =
95 uni0c ran g A g C = e ran g A g C e =
96 94 95 sylib C A ran g A g C = f C f C x A e ran g A g C e =
97 eqid x C = x C
98 difeq1 g = x g C = x C
99 98 rspceeqv x A x C = x C g A x C = g C
100 97 99 mpan2 x A g A x C = g C
101 vex x V
102 difexg x V x C V
103 9 elrnmpt x C V x C ran g A g C g A x C = g C
104 101 102 103 mp2b x C ran g A g C g A x C = g C
105 100 104 sylibr x A x C ran g A g C
106 105 adantl C A ran g A g C = f C f C x A x C ran g A g C
107 89 96 106 rspcdva C A ran g A g C = f C f C x A x C =
108 ssdif0 x C x C =
109 107 108 sylibr C A ran g A g C = f C f C x A x C
110 109 ralrimiva C A ran g A g C = f C f C x A x C
111 unissb A C x A x C
112 110 111 sylibr C A ran g A g C = f C f C A C
113 elssuni C A C A
114 113 ad2antrr C A ran g A g C = f C f C C A
115 112 114 eqssd C A ran g A g C = f C f C A = C
116 simpll C A ran g A g C = f C f C C A
117 115 116 eqeltrd C A ran g A g C = f C f C A A
118 117 ex C A ran g A g C = f C f C A A
119 87 88 118 syl2anc A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A f C A A
120 86 119 mtod A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A ¬ f C
121 28 ad2antrr A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A [⊂] Or A
122 simplrl A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A f A
123 sorpssi [⊂] Or A f A C A f C C f
124 121 122 87 123 syl12anc A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A f C C f
125 orel1 ¬ f C f C C f C f
126 120 124 125 sylc A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A C f
127 undif C f C f C = f
128 126 127 sylib A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A C f C = f
129 85 128 sseq12d A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A C h C C f C h C f
130 ssun1 h h C
131 sstr h h C h C f h f
132 130 131 mpan h C f h f
133 129 132 syl6bi A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A C h C C f C h f
134 81 133 syl5 A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A h C f C h f
135 80 134 mpd A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A h f
136 135 ralrimiva A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C h A h f
137 unissb A f h A h f
138 136 137 sylibr A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C A f
139 elssuni f A f A
140 139 ad2antrl A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C f A
141 138 140 eqssd A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C A = f
142 simprl A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C f A
143 141 142 eqeltrd A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C A A
144 143 rexlimdvaa A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII f A ran g A g C = f C A A
145 65 144 syl5 A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII ran g A g C ran g A g C A A
146 61 145 mtod A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A B C FinII ¬ ran g A g C ran g A g C
147 60 146 pm2.65da A 𝒫 B [⊂] Or A ¬ A A ¬ C Fin C A ¬ B C FinII