| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
simpll1 |
|
| 3 |
|
ssel2 |
|
| 4 |
3
|
elpwid |
|
| 5 |
4
|
ssdifd |
|
| 6 |
|
sseq1 |
|
| 7 |
5 6
|
syl5ibrcom |
|
| 8 |
7
|
rexlimdva |
|
| 9 |
|
eqid |
|
| 10 |
9
|
elrnmpt |
|
| 11 |
10
|
elv |
|
| 12 |
|
velpw |
|
| 13 |
8 11 12
|
3imtr4g |
|
| 14 |
13
|
ssrdv |
|
| 15 |
2 14
|
syl |
|
| 16 |
|
simplrr |
|
| 17 |
|
difid |
|
| 18 |
17
|
eqcomi |
|
| 19 |
|
difeq1 |
|
| 20 |
19
|
rspceeqv |
|
| 21 |
18 20
|
mpan2 |
|
| 22 |
|
0ex |
|
| 23 |
9
|
elrnmpt |
|
| 24 |
22 23
|
ax-mp |
|
| 25 |
21 24
|
sylibr |
|
| 26 |
|
ne0i |
|
| 27 |
16 25 26
|
3syl |
|
| 28 |
|
simpll2 |
|
| 29 |
9
|
elrnmpt |
|
| 30 |
29
|
elv |
|
| 31 |
|
difeq1 |
|
| 32 |
31
|
eqeq2d |
|
| 33 |
32
|
cbvrexvw |
|
| 34 |
|
sorpssi |
|
| 35 |
|
ssdif |
|
| 36 |
|
ssdif |
|
| 37 |
35 36
|
orim12i |
|
| 38 |
34 37
|
syl |
|
| 39 |
|
sseq2 |
|
| 40 |
|
sseq1 |
|
| 41 |
39 40
|
orbi12d |
|
| 42 |
38 41
|
syl5ibrcom |
|
| 43 |
42
|
expr |
|
| 44 |
43
|
rexlimdv |
|
| 45 |
11 44
|
biimtrid |
|
| 46 |
45
|
ralrimiv |
|
| 47 |
|
sseq1 |
|
| 48 |
|
sseq2 |
|
| 49 |
47 48
|
orbi12d |
|
| 50 |
49
|
ralbidv |
|
| 51 |
46 50
|
syl5ibrcom |
|
| 52 |
51
|
rexlimdva |
|
| 53 |
33 52
|
biimtrid |
|
| 54 |
30 53
|
biimtrid |
|
| 55 |
54
|
ralrimiv |
|
| 56 |
|
sorpss |
|
| 57 |
55 56
|
sylibr |
|
| 58 |
28 57
|
syl |
|
| 59 |
|
fin2i |
|
| 60 |
1 15 27 58 59
|
syl22anc |
|
| 61 |
|
simpll3 |
|
| 62 |
|
difeq1 |
|
| 63 |
62
|
cbvmptv |
|
| 64 |
63
|
elrnmpt |
|
| 65 |
64
|
ibi |
|
| 66 |
|
eqid |
|
| 67 |
|
difeq1 |
|
| 68 |
67
|
rspceeqv |
|
| 69 |
66 68
|
mpan2 |
|
| 70 |
69
|
adantl |
|
| 71 |
|
vex |
|
| 72 |
|
difexg |
|
| 73 |
9
|
elrnmpt |
|
| 74 |
71 72 73
|
mp2b |
|
| 75 |
70 74
|
sylibr |
|
| 76 |
|
elssuni |
|
| 77 |
75 76
|
syl |
|
| 78 |
|
simplr |
|
| 79 |
77 78
|
sseqtrd |
|
| 80 |
79
|
adantll |
|
| 81 |
|
unss2 |
|
| 82 |
|
uncom |
|
| 83 |
|
undif1 |
|
| 84 |
82 83
|
eqtri |
|
| 85 |
84
|
a1i |
|
| 86 |
61
|
ad2antrr |
|
| 87 |
16
|
ad2antrr |
|
| 88 |
|
simplrr |
|
| 89 |
|
eqeq1 |
|
| 90 |
|
simpllr |
|
| 91 |
|
ssdif0 |
|
| 92 |
91
|
biimpi |
|
| 93 |
92
|
ad2antlr |
|
| 94 |
90 93
|
eqtrd |
|
| 95 |
|
uni0c |
|
| 96 |
94 95
|
sylib |
|
| 97 |
|
eqid |
|
| 98 |
|
difeq1 |
|
| 99 |
98
|
rspceeqv |
|
| 100 |
97 99
|
mpan2 |
|
| 101 |
|
vex |
|
| 102 |
|
difexg |
|
| 103 |
9
|
elrnmpt |
|
| 104 |
101 102 103
|
mp2b |
|
| 105 |
100 104
|
sylibr |
|
| 106 |
105
|
adantl |
|
| 107 |
89 96 106
|
rspcdva |
|
| 108 |
|
ssdif0 |
|
| 109 |
107 108
|
sylibr |
|
| 110 |
109
|
ralrimiva |
|
| 111 |
|
unissb |
|
| 112 |
110 111
|
sylibr |
|
| 113 |
|
elssuni |
|
| 114 |
113
|
ad2antrr |
|
| 115 |
112 114
|
eqssd |
|
| 116 |
|
simpll |
|
| 117 |
115 116
|
eqeltrd |
|
| 118 |
117
|
ex |
|
| 119 |
87 88 118
|
syl2anc |
|
| 120 |
86 119
|
mtod |
|
| 121 |
28
|
ad2antrr |
|
| 122 |
|
simplrl |
|
| 123 |
|
sorpssi |
|
| 124 |
121 122 87 123
|
syl12anc |
|
| 125 |
|
orel1 |
|
| 126 |
120 124 125
|
sylc |
|
| 127 |
|
undif |
|
| 128 |
126 127
|
sylib |
|
| 129 |
85 128
|
sseq12d |
|
| 130 |
|
ssun1 |
|
| 131 |
|
sstr |
|
| 132 |
130 131
|
mpan |
|
| 133 |
129 132
|
biimtrdi |
|
| 134 |
81 133
|
syl5 |
|
| 135 |
80 134
|
mpd |
|
| 136 |
135
|
ralrimiva |
|
| 137 |
|
unissb |
|
| 138 |
136 137
|
sylibr |
|
| 139 |
|
elssuni |
|
| 140 |
139
|
ad2antrl |
|
| 141 |
138 140
|
eqssd |
|
| 142 |
|
simprl |
|
| 143 |
141 142
|
eqeltrd |
|
| 144 |
143
|
rexlimdvaa |
|
| 145 |
65 144
|
syl5 |
|
| 146 |
61 145
|
mtod |
|
| 147 |
60 146
|
pm2.65da |
|