Metamath Proof Explorer


Theorem fin1a2lem2

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis fin1a2lem.a S = x On suc x
Assertion fin1a2lem2 S : On 1-1 On

Proof

Step Hyp Ref Expression
1 fin1a2lem.a S = x On suc x
2 suceloni x On suc x On
3 1 2 fmpti S : On On
4 1 fin1a2lem1 a On S a = suc a
5 1 fin1a2lem1 b On S b = suc b
6 4 5 eqeqan12d a On b On S a = S b suc a = suc b
7 suc11 a On b On suc a = suc b a = b
8 6 7 bitrd a On b On S a = S b a = b
9 8 biimpd a On b On S a = S b a = b
10 9 rgen2 a On b On S a = S b a = b
11 dff13 S : On 1-1 On S : On On a On b On S a = S b a = b
12 3 10 11 mpbir2an S : On 1-1 On