Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
fin1a2lem2
Next ⟩
fin1a2lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
fin1a2lem2
Description:
Lemma for
fin1a2
.
(Contributed by
Stefan O'Rear
, 7-Nov-2014)
Ref
Expression
Hypothesis
fin1a2lem.a
⊢
S
=
x
∈
On
⟼
suc
⁡
x
Assertion
fin1a2lem2
⊢
S
:
On
⟶
1-1
On
Proof
Step
Hyp
Ref
Expression
1
fin1a2lem.a
⊢
S
=
x
∈
On
⟼
suc
⁡
x
2
suceloni
⊢
x
∈
On
→
suc
⁡
x
∈
On
3
1
2
fmpti
⊢
S
:
On
⟶
On
4
1
fin1a2lem1
⊢
a
∈
On
→
S
⁡
a
=
suc
⁡
a
5
1
fin1a2lem1
⊢
b
∈
On
→
S
⁡
b
=
suc
⁡
b
6
4
5
eqeqan12d
⊢
a
∈
On
∧
b
∈
On
→
S
⁡
a
=
S
⁡
b
↔
suc
⁡
a
=
suc
⁡
b
7
suc11
⊢
a
∈
On
∧
b
∈
On
→
suc
⁡
a
=
suc
⁡
b
↔
a
=
b
8
6
7
bitrd
⊢
a
∈
On
∧
b
∈
On
→
S
⁡
a
=
S
⁡
b
↔
a
=
b
9
8
biimpd
⊢
a
∈
On
∧
b
∈
On
→
S
⁡
a
=
S
⁡
b
→
a
=
b
10
9
rgen2
⊢
∀
a
∈
On
∀
b
∈
On
S
⁡
a
=
S
⁡
b
→
a
=
b
11
dff13
⊢
S
:
On
⟶
1-1
On
↔
S
:
On
⟶
On
∧
∀
a
∈
On
∀
b
∈
On
S
⁡
a
=
S
⁡
b
→
a
=
b
12
3
10
11
mpbir2an
⊢
S
:
On
⟶
1-1
On