Metamath Proof Explorer


Theorem fin1a2lem4

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis fin1a2lem.b E = x ω 2 𝑜 𝑜 x
Assertion fin1a2lem4 E : ω 1-1 ω

Proof

Step Hyp Ref Expression
1 fin1a2lem.b E = x ω 2 𝑜 𝑜 x
2 2onn 2 𝑜 ω
3 nnmcl 2 𝑜 ω x ω 2 𝑜 𝑜 x ω
4 2 3 mpan x ω 2 𝑜 𝑜 x ω
5 1 4 fmpti E : ω ω
6 1 fin1a2lem3 a ω E a = 2 𝑜 𝑜 a
7 1 fin1a2lem3 b ω E b = 2 𝑜 𝑜 b
8 6 7 eqeqan12d a ω b ω E a = E b 2 𝑜 𝑜 a = 2 𝑜 𝑜 b
9 2on 2 𝑜 On
10 9 a1i a ω b ω 2 𝑜 On
11 nnon a ω a On
12 11 adantr a ω b ω a On
13 nnon b ω b On
14 13 adantl a ω b ω b On
15 0lt1o 1 𝑜
16 elelsuc 1 𝑜 suc 1 𝑜
17 15 16 ax-mp suc 1 𝑜
18 df-2o 2 𝑜 = suc 1 𝑜
19 17 18 eleqtrri 2 𝑜
20 19 a1i a ω b ω 2 𝑜
21 omcan 2 𝑜 On a On b On 2 𝑜 2 𝑜 𝑜 a = 2 𝑜 𝑜 b a = b
22 10 12 14 20 21 syl31anc a ω b ω 2 𝑜 𝑜 a = 2 𝑜 𝑜 b a = b
23 8 22 bitrd a ω b ω E a = E b a = b
24 23 biimpd a ω b ω E a = E b a = b
25 24 rgen2 a ω b ω E a = E b a = b
26 dff13 E : ω 1-1 ω E : ω ω a ω b ω E a = E b a = b
27 5 25 26 mpbir2an E : ω 1-1 ω