Metamath Proof Explorer


Theorem fin1a2lem5

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis fin1a2lem.b E = x ω 2 𝑜 𝑜 x
Assertion fin1a2lem5 A ω A ran E ¬ suc A ran E

Proof

Step Hyp Ref Expression
1 fin1a2lem.b E = x ω 2 𝑜 𝑜 x
2 nneob A ω a ω A = 2 𝑜 𝑜 a ¬ a ω suc A = 2 𝑜 𝑜 a
3 1 fin1a2lem4 E : ω 1-1 ω
4 f1fn E : ω 1-1 ω E Fn ω
5 3 4 ax-mp E Fn ω
6 fvelrnb E Fn ω A ran E a ω E a = A
7 5 6 ax-mp A ran E a ω E a = A
8 eqcom E a = A A = E a
9 1 fin1a2lem3 a ω E a = 2 𝑜 𝑜 a
10 9 eqeq2d a ω A = E a A = 2 𝑜 𝑜 a
11 8 10 syl5bb a ω E a = A A = 2 𝑜 𝑜 a
12 11 rexbiia a ω E a = A a ω A = 2 𝑜 𝑜 a
13 7 12 bitri A ran E a ω A = 2 𝑜 𝑜 a
14 fvelrnb E Fn ω suc A ran E a ω E a = suc A
15 5 14 ax-mp suc A ran E a ω E a = suc A
16 eqcom E a = suc A suc A = E a
17 9 eqeq2d a ω suc A = E a suc A = 2 𝑜 𝑜 a
18 16 17 syl5bb a ω E a = suc A suc A = 2 𝑜 𝑜 a
19 18 rexbiia a ω E a = suc A a ω suc A = 2 𝑜 𝑜 a
20 15 19 bitri suc A ran E a ω suc A = 2 𝑜 𝑜 a
21 20 notbii ¬ suc A ran E ¬ a ω suc A = 2 𝑜 𝑜 a
22 2 13 21 3bitr4g A ω A ran E ¬ suc A ran E