Step |
Hyp |
Ref |
Expression |
1 |
|
fin1a2lem.b |
|
2 |
|
fin1a2lem.aa |
|
3 |
2
|
fin1a2lem2 |
|
4 |
1
|
fin1a2lem4 |
|
5 |
|
f1f |
|
6 |
|
frn |
|
7 |
|
omsson |
|
8 |
6 7
|
sstrdi |
|
9 |
4 5 8
|
mp2b |
|
10 |
|
f1ores |
|
11 |
3 9 10
|
mp2an |
|
12 |
9
|
sseli |
|
13 |
2
|
fin1a2lem1 |
|
14 |
12 13
|
syl |
|
15 |
14
|
eqeq1d |
|
16 |
15
|
rexbiia |
|
17 |
4 5 6
|
mp2b |
|
18 |
17
|
sseli |
|
19 |
|
peano2 |
|
20 |
18 19
|
syl |
|
21 |
1
|
fin1a2lem5 |
|
22 |
21
|
biimpd |
|
23 |
18 22
|
mpcom |
|
24 |
20 23
|
jca |
|
25 |
|
eleq1 |
|
26 |
|
eleq1 |
|
27 |
26
|
notbid |
|
28 |
25 27
|
anbi12d |
|
29 |
24 28
|
syl5ibcom |
|
30 |
29
|
rexlimiv |
|
31 |
|
peano1 |
|
32 |
1
|
fin1a2lem3 |
|
33 |
31 32
|
ax-mp |
|
34 |
|
2on |
|
35 |
|
om0 |
|
36 |
34 35
|
ax-mp |
|
37 |
33 36
|
eqtri |
|
38 |
|
f1fun |
|
39 |
4 38
|
ax-mp |
|
40 |
|
f1dm |
|
41 |
4 40
|
ax-mp |
|
42 |
31 41
|
eleqtrri |
|
43 |
|
fvelrn |
|
44 |
39 42 43
|
mp2an |
|
45 |
37 44
|
eqeltrri |
|
46 |
|
eleq1 |
|
47 |
45 46
|
mpbiri |
|
48 |
47
|
necon3bi |
|
49 |
|
nnsuc |
|
50 |
48 49
|
sylan2 |
|
51 |
|
eleq1 |
|
52 |
|
eleq1 |
|
53 |
52
|
notbid |
|
54 |
51 53
|
anbi12d |
|
55 |
54
|
anbi1d |
|
56 |
|
simplr |
|
57 |
21
|
adantl |
|
58 |
56 57
|
mpbird |
|
59 |
55 58
|
syl6bi |
|
60 |
59
|
com12 |
|
61 |
60
|
impr |
|
62 |
|
simprr |
|
63 |
62
|
eqcomd |
|
64 |
50 61 63
|
reximssdv |
|
65 |
30 64
|
impbii |
|
66 |
16 65
|
bitri |
|
67 |
|
f1fn |
|
68 |
3 67
|
ax-mp |
|
69 |
|
fvelimab |
|
70 |
68 9 69
|
mp2an |
|
71 |
|
eldif |
|
72 |
66 70 71
|
3bitr4i |
|
73 |
72
|
eqriv |
|
74 |
|
f1oeq3 |
|
75 |
73 74
|
ax-mp |
|
76 |
11 75
|
mpbi |
|