Metamath Proof Explorer


Theorem fin1a2lem6

Description: Lemma for fin1a2 . Establish that _om can be broken into two equipollent pieces. (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypotheses fin1a2lem.b E = x ω 2 𝑜 𝑜 x
fin1a2lem.aa S = x On suc x
Assertion fin1a2lem6 S ran E : ran E 1-1 onto ω ran E

Proof

Step Hyp Ref Expression
1 fin1a2lem.b E = x ω 2 𝑜 𝑜 x
2 fin1a2lem.aa S = x On suc x
3 2 fin1a2lem2 S : On 1-1 On
4 1 fin1a2lem4 E : ω 1-1 ω
5 f1f E : ω 1-1 ω E : ω ω
6 frn E : ω ω ran E ω
7 omsson ω On
8 6 7 sstrdi E : ω ω ran E On
9 4 5 8 mp2b ran E On
10 f1ores S : On 1-1 On ran E On S ran E : ran E 1-1 onto S ran E
11 3 9 10 mp2an S ran E : ran E 1-1 onto S ran E
12 9 sseli b ran E b On
13 2 fin1a2lem1 b On S b = suc b
14 12 13 syl b ran E S b = suc b
15 14 eqeq1d b ran E S b = a suc b = a
16 15 rexbiia b ran E S b = a b ran E suc b = a
17 4 5 6 mp2b ran E ω
18 17 sseli b ran E b ω
19 peano2 b ω suc b ω
20 18 19 syl b ran E suc b ω
21 1 fin1a2lem5 b ω b ran E ¬ suc b ran E
22 21 biimpd b ω b ran E ¬ suc b ran E
23 18 22 mpcom b ran E ¬ suc b ran E
24 20 23 jca b ran E suc b ω ¬ suc b ran E
25 eleq1 suc b = a suc b ω a ω
26 eleq1 suc b = a suc b ran E a ran E
27 26 notbid suc b = a ¬ suc b ran E ¬ a ran E
28 25 27 anbi12d suc b = a suc b ω ¬ suc b ran E a ω ¬ a ran E
29 24 28 syl5ibcom b ran E suc b = a a ω ¬ a ran E
30 29 rexlimiv b ran E suc b = a a ω ¬ a ran E
31 peano1 ω
32 1 fin1a2lem3 ω E = 2 𝑜 𝑜
33 31 32 ax-mp E = 2 𝑜 𝑜
34 2on 2 𝑜 On
35 om0 2 𝑜 On 2 𝑜 𝑜 =
36 34 35 ax-mp 2 𝑜 𝑜 =
37 33 36 eqtri E =
38 f1fun E : ω 1-1 ω Fun E
39 4 38 ax-mp Fun E
40 f1dm E : ω 1-1 ω dom E = ω
41 4 40 ax-mp dom E = ω
42 31 41 eleqtrri dom E
43 fvelrn Fun E dom E E ran E
44 39 42 43 mp2an E ran E
45 37 44 eqeltrri ran E
46 eleq1 a = a ran E ran E
47 45 46 mpbiri a = a ran E
48 47 necon3bi ¬ a ran E a
49 nnsuc a ω a b ω a = suc b
50 48 49 sylan2 a ω ¬ a ran E b ω a = suc b
51 eleq1 a = suc b a ω suc b ω
52 eleq1 a = suc b a ran E suc b ran E
53 52 notbid a = suc b ¬ a ran E ¬ suc b ran E
54 51 53 anbi12d a = suc b a ω ¬ a ran E suc b ω ¬ suc b ran E
55 54 anbi1d a = suc b a ω ¬ a ran E b ω suc b ω ¬ suc b ran E b ω
56 simplr suc b ω ¬ suc b ran E b ω ¬ suc b ran E
57 21 adantl suc b ω ¬ suc b ran E b ω b ran E ¬ suc b ran E
58 56 57 mpbird suc b ω ¬ suc b ran E b ω b ran E
59 55 58 syl6bi a = suc b a ω ¬ a ran E b ω b ran E
60 59 com12 a ω ¬ a ran E b ω a = suc b b ran E
61 60 impr a ω ¬ a ran E b ω a = suc b b ran E
62 simprr a ω ¬ a ran E b ω a = suc b a = suc b
63 62 eqcomd a ω ¬ a ran E b ω a = suc b suc b = a
64 50 61 63 reximssdv a ω ¬ a ran E b ran E suc b = a
65 30 64 impbii b ran E suc b = a a ω ¬ a ran E
66 16 65 bitri b ran E S b = a a ω ¬ a ran E
67 f1fn S : On 1-1 On S Fn On
68 3 67 ax-mp S Fn On
69 fvelimab S Fn On ran E On a S ran E b ran E S b = a
70 68 9 69 mp2an a S ran E b ran E S b = a
71 eldif a ω ran E a ω ¬ a ran E
72 66 70 71 3bitr4i a S ran E a ω ran E
73 72 eqriv S ran E = ω ran E
74 f1oeq3 S ran E = ω ran E S ran E : ran E 1-1 onto S ran E S ran E : ran E 1-1 onto ω ran E
75 73 74 ax-mp S ran E : ran E 1-1 onto S ran E S ran E : ran E 1-1 onto ω ran E
76 11 75 mpbi S ran E : ran E 1-1 onto ω ran E