Metamath Proof Explorer


Theorem fin1a2lem8

Description: Lemma for fin1a2 . Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Assertion fin1a2lem8 A V x 𝒫 A x FinIII A x FinIII A FinIII

Proof

Step Hyp Ref Expression
1 eqid y ω 2 𝑜 𝑜 y = y ω 2 𝑜 𝑜 y
2 eqid y On suc y = y On suc y
3 1 2 fin1a2lem7 A V x 𝒫 A x FinIII A x FinIII A FinIII