Metamath Proof Explorer


Theorem fin1a2lem9

Description: Lemma for fin1a2 . In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014)

Ref Expression
Assertion fin1a2lem9 [⊂] Or X X Fin A ω b X | b A Fin

Proof

Step Hyp Ref Expression
1 onfin2 ω = On Fin
2 inss2 On Fin Fin
3 1 2 eqsstri ω Fin
4 peano2 A ω suc A ω
5 3 4 sselid A ω suc A Fin
6 5 3ad2ant3 [⊂] Or X X Fin A ω suc A Fin
7 4 3ad2ant3 [⊂] Or X X Fin A ω suc A ω
8 breq1 b = c b A c A
9 8 elrab c b X | b A c X c A
10 simprr [⊂] Or X X Fin A ω c X c A c A
11 simpl2 [⊂] Or X X Fin A ω c X c A X Fin
12 simprl [⊂] Or X X Fin A ω c X c A c X
13 11 12 sseldd [⊂] Or X X Fin A ω c X c A c Fin
14 finnum c Fin c dom card
15 13 14 syl [⊂] Or X X Fin A ω c X c A c dom card
16 simpl3 [⊂] Or X X Fin A ω c X c A A ω
17 3 16 sselid [⊂] Or X X Fin A ω c X c A A Fin
18 finnum A Fin A dom card
19 17 18 syl [⊂] Or X X Fin A ω c X c A A dom card
20 carddom2 c dom card A dom card card c card A c A
21 15 19 20 syl2anc [⊂] Or X X Fin A ω c X c A card c card A c A
22 10 21 mpbird [⊂] Or X X Fin A ω c X c A card c card A
23 22 ex [⊂] Or X X Fin A ω c X c A card c card A
24 cardnn A ω card A = A
25 24 sseq2d A ω card c card A card c A
26 cardon card c On
27 nnon A ω A On
28 onsssuc card c On A On card c A card c suc A
29 26 27 28 sylancr A ω card c A card c suc A
30 25 29 bitrd A ω card c card A card c suc A
31 30 3ad2ant3 [⊂] Or X X Fin A ω card c card A card c suc A
32 23 31 sylibd [⊂] Or X X Fin A ω c X c A card c suc A
33 9 32 syl5bi [⊂] Or X X Fin A ω c b X | b A card c suc A
34 elrabi c b X | b A c X
35 elrabi d b X | b A d X
36 ssel X Fin c X c Fin
37 ssel X Fin d X d Fin
38 36 37 anim12d X Fin c X d X c Fin d Fin
39 38 imp X Fin c X d X c Fin d Fin
40 39 3ad2antl2 [⊂] Or X X Fin A ω c X d X c Fin d Fin
41 sorpssi [⊂] Or X c X d X c d d c
42 41 3ad2antl1 [⊂] Or X X Fin A ω c X d X c d d c
43 finnum d Fin d dom card
44 carden2 c dom card d dom card card c = card d c d
45 14 43 44 syl2an c Fin d Fin card c = card d c d
46 45 adantr c Fin d Fin c d d c card c = card d c d
47 fin23lem25 c Fin d Fin c d d c c d c = d
48 47 3expa c Fin d Fin c d d c c d c = d
49 48 biimpd c Fin d Fin c d d c c d c = d
50 46 49 sylbid c Fin d Fin c d d c card c = card d c = d
51 40 42 50 syl2anc [⊂] Or X X Fin A ω c X d X card c = card d c = d
52 fveq2 c = d card c = card d
53 51 52 impbid1 [⊂] Or X X Fin A ω c X d X card c = card d c = d
54 53 ex [⊂] Or X X Fin A ω c X d X card c = card d c = d
55 34 35 54 syl2ani [⊂] Or X X Fin A ω c b X | b A d b X | b A card c = card d c = d
56 33 55 dom2d [⊂] Or X X Fin A ω suc A ω b X | b A suc A
57 7 56 mpd [⊂] Or X X Fin A ω b X | b A suc A
58 domfi suc A Fin b X | b A suc A b X | b A Fin
59 6 57 58 syl2anc [⊂] Or X X Fin A ω b X | b A Fin