Metamath Proof Explorer


Theorem fin1a2s

Description: An II-infinite set can have an I-infinite part broken off and remain II-infinite. (Contributed by Stefan O'Rear, 8-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin1a2s A V x 𝒫 A x Fin A x FinII A FinII

Proof

Step Hyp Ref Expression
1 elpwi c 𝒫 𝒫 A c 𝒫 A
2 fin12 x Fin x FinII
3 fin23 x FinII x FinIII
4 2 3 syl x Fin x FinIII
5 fin23 A x FinII A x FinIII
6 4 5 orim12i x Fin A x FinII x FinIII A x FinIII
7 6 ralimi x 𝒫 A x Fin A x FinII x 𝒫 A x FinIII A x FinIII
8 fin1a2lem8 A V x 𝒫 A x FinIII A x FinIII A FinIII
9 7 8 sylan2 A V x 𝒫 A x Fin A x FinII A FinIII
10 9 adantr A V x 𝒫 A x Fin A x FinII c 𝒫 A c [⊂] Or c A FinIII
11 simplrl A V c 𝒫 A c [⊂] Or c ¬ c c x 𝒫 A x Fin A x FinII c 𝒫 A
12 simprrr A V c 𝒫 A c [⊂] Or c [⊂] Or c
13 12 adantr A V c 𝒫 A c [⊂] Or c ¬ c c x 𝒫 A x Fin A x FinII [⊂] Or c
14 simprl A V c 𝒫 A c [⊂] Or c ¬ c c x 𝒫 A x Fin A x FinII ¬ c c
15 simplrl A V c 𝒫 A c [⊂] Or c ¬ c c c 𝒫 A
16 ssralv c 𝒫 A x 𝒫 A x Fin A x FinII x c x Fin A x FinII
17 15 16 syl A V c 𝒫 A c [⊂] Or c ¬ c c x 𝒫 A x Fin A x FinII x c x Fin A x FinII
18 idd A V c 𝒫 A c [⊂] Or c ¬ c c x c x Fin x Fin
19 fin1a2lem13 c 𝒫 A [⊂] Or c ¬ c c ¬ x Fin x c ¬ A x FinII
20 19 ex c 𝒫 A [⊂] Or c ¬ c c ¬ x Fin x c ¬ A x FinII
21 20 3expa c 𝒫 A [⊂] Or c ¬ c c ¬ x Fin x c ¬ A x FinII
22 21 adantlrl c 𝒫 A c [⊂] Or c ¬ c c ¬ x Fin x c ¬ A x FinII
23 22 adantll A V c 𝒫 A c [⊂] Or c ¬ c c ¬ x Fin x c ¬ A x FinII
24 23 imp A V c 𝒫 A c [⊂] Or c ¬ c c ¬ x Fin x c ¬ A x FinII
25 24 ancom2s A V c 𝒫 A c [⊂] Or c ¬ c c x c ¬ x Fin ¬ A x FinII
26 25 expr A V c 𝒫 A c [⊂] Or c ¬ c c x c ¬ x Fin ¬ A x FinII
27 26 con4d A V c 𝒫 A c [⊂] Or c ¬ c c x c A x FinII x Fin
28 18 27 jaod A V c 𝒫 A c [⊂] Or c ¬ c c x c x Fin A x FinII x Fin
29 28 ralimdva A V c 𝒫 A c [⊂] Or c ¬ c c x c x Fin A x FinII x c x Fin
30 17 29 syld A V c 𝒫 A c [⊂] Or c ¬ c c x 𝒫 A x Fin A x FinII x c x Fin
31 30 impr A V c 𝒫 A c [⊂] Or c ¬ c c x 𝒫 A x Fin A x FinII x c x Fin
32 dfss3 c Fin x c x Fin
33 31 32 sylibr A V c 𝒫 A c [⊂] Or c ¬ c c x 𝒫 A x Fin A x FinII c Fin
34 simprrl A V c 𝒫 A c [⊂] Or c c
35 34 adantr A V c 𝒫 A c [⊂] Or c ¬ c c x 𝒫 A x Fin A x FinII c
36 fin1a2lem12 c 𝒫 A [⊂] Or c ¬ c c c Fin c ¬ A FinIII
37 11 13 14 33 35 36 syl32anc A V c 𝒫 A c [⊂] Or c ¬ c c x 𝒫 A x Fin A x FinII ¬ A FinIII
38 37 expr A V c 𝒫 A c [⊂] Or c ¬ c c x 𝒫 A x Fin A x FinII ¬ A FinIII
39 38 impancom A V c 𝒫 A c [⊂] Or c x 𝒫 A x Fin A x FinII ¬ c c ¬ A FinIII
40 39 an32s A V x 𝒫 A x Fin A x FinII c 𝒫 A c [⊂] Or c ¬ c c ¬ A FinIII
41 10 40 mt4d A V x 𝒫 A x Fin A x FinII c 𝒫 A c [⊂] Or c c c
42 41 exp32 A V x 𝒫 A x Fin A x FinII c 𝒫 A c [⊂] Or c c c
43 1 42 syl5 A V x 𝒫 A x Fin A x FinII c 𝒫 𝒫 A c [⊂] Or c c c
44 43 ralrimiv A V x 𝒫 A x Fin A x FinII c 𝒫 𝒫 A c [⊂] Or c c c
45 isfin2 A V A FinII c 𝒫 𝒫 A c [⊂] Or c c c
46 45 adantr A V x 𝒫 A x Fin A x FinII A FinII c 𝒫 𝒫 A c [⊂] Or c c c
47 44 46 mpbird A V x 𝒫 A x Fin A x FinII A FinII