Metamath Proof Explorer


Theorem fin1ai

Description: Property of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion fin1ai A FinIa X A X Fin A X Fin

Proof

Step Hyp Ref Expression
1 eleq1 x = X x Fin X Fin
2 difeq2 x = X A x = A X
3 2 eleq1d x = X A x Fin A X Fin
4 1 3 orbi12d x = X x Fin A x Fin X Fin A X Fin
5 isfin1a A FinIa A FinIa x 𝒫 A x Fin A x Fin
6 5 ibi A FinIa x 𝒫 A x Fin A x Fin
7 6 adantr A FinIa X A x 𝒫 A x Fin A x Fin
8 elpw2g A FinIa X 𝒫 A X A
9 8 biimpar A FinIa X A X 𝒫 A
10 4 7 9 rspcdva A FinIa X A X Fin A X Fin