Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
fin1ai
Next ⟩
isfin2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fin1ai
Description:
Property of a Ia-finite set.
(Contributed by
Stefan O'Rear
, 16-May-2015)
Ref
Expression
Assertion
fin1ai
⊢
A
∈
Fin
Ia
∧
X
⊆
A
→
X
∈
Fin
∨
A
∖
X
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
x
=
X
→
x
∈
Fin
↔
X
∈
Fin
2
difeq2
⊢
x
=
X
→
A
∖
x
=
A
∖
X
3
2
eleq1d
⊢
x
=
X
→
A
∖
x
∈
Fin
↔
A
∖
X
∈
Fin
4
1
3
orbi12d
⊢
x
=
X
→
x
∈
Fin
∨
A
∖
x
∈
Fin
↔
X
∈
Fin
∨
A
∖
X
∈
Fin
5
isfin1a
⊢
A
∈
Fin
Ia
→
A
∈
Fin
Ia
↔
∀
x
∈
𝒫
A
x
∈
Fin
∨
A
∖
x
∈
Fin
6
5
ibi
⊢
A
∈
Fin
Ia
→
∀
x
∈
𝒫
A
x
∈
Fin
∨
A
∖
x
∈
Fin
7
6
adantr
⊢
A
∈
Fin
Ia
∧
X
⊆
A
→
∀
x
∈
𝒫
A
x
∈
Fin
∨
A
∖
x
∈
Fin
8
elpw2g
⊢
A
∈
Fin
Ia
→
X
∈
𝒫
A
↔
X
⊆
A
9
8
biimpar
⊢
A
∈
Fin
Ia
∧
X
⊆
A
→
X
∈
𝒫
A
10
4
7
9
rspcdva
⊢
A
∈
Fin
Ia
∧
X
⊆
A
→
X
∈
Fin
∨
A
∖
X
∈
Fin