Metamath Proof Explorer


Theorem fin23lem11

Description: Lemma for isfin2-2 . (Contributed by Stefan O'Rear, 31-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Hypotheses fin23lem11.1 z = A x ψ χ
fin23lem11.2 w = A v φ θ
fin23lem11.3 x A v A χ θ
Assertion fin23lem11 B 𝒫 A x c 𝒫 A | A c B w c 𝒫 A | A c B ¬ φ z B v B ¬ ψ

Proof

Step Hyp Ref Expression
1 fin23lem11.1 z = A x ψ χ
2 fin23lem11.2 w = A v φ θ
3 fin23lem11.3 x A v A χ θ
4 difeq2 c = x A c = A x
5 4 eleq1d c = x A c B A x B
6 5 elrab x c 𝒫 A | A c B x 𝒫 A A x B
7 simp2r B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ A x B
8 2 notbid w = A v ¬ φ ¬ θ
9 simpl3 B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B w c 𝒫 A | A c B ¬ φ
10 difeq2 c = A v A c = A A v
11 10 eleq1d c = A v A c B A A v B
12 difss A v A
13 ssun1 A A x
14 undif1 A x x = A x
15 13 14 sseqtrri A A x x
16 simpl2r B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B A x B
17 simpl2l B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B x 𝒫 A
18 unexg A x B x 𝒫 A A x x V
19 16 17 18 syl2anc B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B A x x V
20 ssexg A A x x A x x V A V
21 15 19 20 sylancr B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B A V
22 elpw2g A V A v 𝒫 A A v A
23 21 22 syl B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B A v 𝒫 A A v A
24 12 23 mpbiri B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B A v 𝒫 A
25 simpl1 B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B B 𝒫 A
26 simpr B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B v B
27 25 26 sseldd B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B v 𝒫 A
28 27 elpwid B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B v A
29 dfss4 v A A A v = v
30 28 29 sylib B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B A A v = v
31 30 26 eqeltrd B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B A A v B
32 11 24 31 elrabd B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B A v c 𝒫 A | A c B
33 8 9 32 rspcdva B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B ¬ θ
34 simplrl B 𝒫 A x 𝒫 A A x B v B x 𝒫 A
35 34 elpwid B 𝒫 A x 𝒫 A A x B v B x A
36 ssel2 B 𝒫 A v B v 𝒫 A
37 36 adantlr B 𝒫 A x 𝒫 A A x B v B v 𝒫 A
38 37 elpwid B 𝒫 A x 𝒫 A A x B v B v A
39 35 38 3 syl2anc B 𝒫 A x 𝒫 A A x B v B χ θ
40 39 notbid B 𝒫 A x 𝒫 A A x B v B ¬ χ ¬ θ
41 40 3adantl3 B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B ¬ χ ¬ θ
42 33 41 mpbird B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B ¬ χ
43 42 ralrimiva B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ v B ¬ χ
44 1 notbid z = A x ¬ ψ ¬ χ
45 44 ralbidv z = A x v B ¬ ψ v B ¬ χ
46 45 rspcev A x B v B ¬ χ z B v B ¬ ψ
47 7 43 46 syl2anc B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ z B v B ¬ ψ
48 47 3exp B 𝒫 A x 𝒫 A A x B w c 𝒫 A | A c B ¬ φ z B v B ¬ ψ
49 6 48 syl5bi B 𝒫 A x c 𝒫 A | A c B w c 𝒫 A | A c B ¬ φ z B v B ¬ ψ
50 49 rexlimdv B 𝒫 A x c 𝒫 A | A c B w c 𝒫 A | A c B ¬ φ z B v B ¬ ψ