Metamath Proof Explorer


Theorem fin23lem13

Description: Lemma for fin23 . Each step of U is a decrease. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
Assertion fin23lem13 A ω U suc A U A

Proof

Step Hyp Ref Expression
1 fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
2 1 fin23lem12 A ω U suc A = if t A U A = U A t A U A
3 sseq1 U A = if t A U A = U A t A U A U A U A if t A U A = U A t A U A U A
4 sseq1 t A U A = if t A U A = U A t A U A t A U A U A if t A U A = U A t A U A U A
5 ssid U A U A
6 inss2 t A U A U A
7 3 4 5 6 keephyp if t A U A = U A t A U A U A
8 2 7 eqsstrdi A ω U suc A U A