Metamath Proof Explorer


Theorem fin23lem14

Description: Lemma for fin23 . U will never evolve to an empty set if it did not start with one. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
Assertion fin23lem14 A ω ran t U A

Proof

Step Hyp Ref Expression
1 fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
2 fveq2 a = U a = U
3 2 neeq1d a = U a U
4 3 imbi2d a = ran t U a ran t U
5 fveq2 a = b U a = U b
6 5 neeq1d a = b U a U b
7 6 imbi2d a = b ran t U a ran t U b
8 fveq2 a = suc b U a = U suc b
9 8 neeq1d a = suc b U a U suc b
10 9 imbi2d a = suc b ran t U a ran t U suc b
11 fveq2 a = A U a = U A
12 11 neeq1d a = A U a U A
13 12 imbi2d a = A ran t U a ran t U A
14 vex t V
15 14 rnex ran t V
16 15 uniex ran t V
17 1 seqom0g ran t V U = ran t
18 16 17 mp1i ran t U = ran t
19 id ran t ran t
20 18 19 eqnetrd ran t U
21 1 fin23lem12 b ω U suc b = if t b U b = U b t b U b
22 21 adantr b ω U b U suc b = if t b U b = U b t b U b
23 iftrue t b U b = if t b U b = U b t b U b = U b
24 23 adantr t b U b = b ω U b if t b U b = U b t b U b = U b
25 simprr t b U b = b ω U b U b
26 24 25 eqnetrd t b U b = b ω U b if t b U b = U b t b U b
27 iffalse ¬ t b U b = if t b U b = U b t b U b = t b U b
28 27 adantr ¬ t b U b = b ω U b if t b U b = U b t b U b = t b U b
29 neqne ¬ t b U b = t b U b
30 29 adantr ¬ t b U b = b ω U b t b U b
31 28 30 eqnetrd ¬ t b U b = b ω U b if t b U b = U b t b U b
32 26 31 pm2.61ian b ω U b if t b U b = U b t b U b
33 22 32 eqnetrd b ω U b U suc b
34 33 ex b ω U b U suc b
35 34 imim2d b ω ran t U b ran t U suc b
36 4 7 10 13 20 35 finds A ω ran t U A
37 36 imp A ω ran t U A