Metamath Proof Explorer


Theorem fin23lem15

Description: Lemma for fin23 . U is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
Assertion fin23lem15 A ω B ω B A U A U B

Proof

Step Hyp Ref Expression
1 fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
2 fveq2 b = B U b = U B
3 2 sseq1d b = B U b U B U B U B
4 fveq2 b = a U b = U a
5 4 sseq1d b = a U b U B U a U B
6 fveq2 b = suc a U b = U suc a
7 6 sseq1d b = suc a U b U B U suc a U B
8 fveq2 b = A U b = U A
9 8 sseq1d b = A U b U B U A U B
10 ssidd B ω U B U B
11 1 fin23lem13 a ω U suc a U a
12 11 ad2antrr a ω B ω B a U suc a U a
13 sstr2 U suc a U a U a U B U suc a U B
14 12 13 syl a ω B ω B a U a U B U suc a U B
15 3 5 7 9 10 14 findsg A ω B ω B A U A U B