Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
fin23lem15
Next ⟩
fin23lem16
Metamath Proof Explorer
Ascii
Unicode
Theorem
fin23lem15
Description:
Lemma for
fin23
.
U
is a monotone function.
(Contributed by
Stefan O'Rear
, 1-Nov-2014)
Ref
Expression
Hypothesis
fin23lem.a
⊢
U
=
seq
ω
i
∈
ω
,
u
∈
V
⟼
if
t
⁡
i
∩
u
=
∅
u
t
⁡
i
∩
u
⋃
ran
⁡
t
Assertion
fin23lem15
⊢
A
∈
ω
∧
B
∈
ω
∧
B
⊆
A
→
U
⁡
A
⊆
U
⁡
B
Proof
Step
Hyp
Ref
Expression
1
fin23lem.a
⊢
U
=
seq
ω
i
∈
ω
,
u
∈
V
⟼
if
t
⁡
i
∩
u
=
∅
u
t
⁡
i
∩
u
⋃
ran
⁡
t
2
fveq2
⊢
b
=
B
→
U
⁡
b
=
U
⁡
B
3
2
sseq1d
⊢
b
=
B
→
U
⁡
b
⊆
U
⁡
B
↔
U
⁡
B
⊆
U
⁡
B
4
fveq2
⊢
b
=
a
→
U
⁡
b
=
U
⁡
a
5
4
sseq1d
⊢
b
=
a
→
U
⁡
b
⊆
U
⁡
B
↔
U
⁡
a
⊆
U
⁡
B
6
fveq2
⊢
b
=
suc
⁡
a
→
U
⁡
b
=
U
⁡
suc
⁡
a
7
6
sseq1d
⊢
b
=
suc
⁡
a
→
U
⁡
b
⊆
U
⁡
B
↔
U
⁡
suc
⁡
a
⊆
U
⁡
B
8
fveq2
⊢
b
=
A
→
U
⁡
b
=
U
⁡
A
9
8
sseq1d
⊢
b
=
A
→
U
⁡
b
⊆
U
⁡
B
↔
U
⁡
A
⊆
U
⁡
B
10
ssidd
⊢
B
∈
ω
→
U
⁡
B
⊆
U
⁡
B
11
1
fin23lem13
⊢
a
∈
ω
→
U
⁡
suc
⁡
a
⊆
U
⁡
a
12
11
ad2antrr
⊢
a
∈
ω
∧
B
∈
ω
∧
B
⊆
a
→
U
⁡
suc
⁡
a
⊆
U
⁡
a
13
sstr2
⊢
U
⁡
suc
⁡
a
⊆
U
⁡
a
→
U
⁡
a
⊆
U
⁡
B
→
U
⁡
suc
⁡
a
⊆
U
⁡
B
14
12
13
syl
⊢
a
∈
ω
∧
B
∈
ω
∧
B
⊆
a
→
U
⁡
a
⊆
U
⁡
B
→
U
⁡
suc
⁡
a
⊆
U
⁡
B
15
3
5
7
9
10
14
findsg
⊢
A
∈
ω
∧
B
∈
ω
∧
B
⊆
A
→
U
⁡
A
⊆
U
⁡
B