Metamath Proof Explorer


Theorem fin23lem17

Description: Lemma for fin23 . By ? Fin3DS ? , U achieves its minimum ( X in the synopsis above, but we will not be assigning a symbol here). TODO: Fix comment; math symbol Fin3DS does not exist. (Contributed by Stefan O'Rear, 4-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
Assertion fin23lem17 ran t F t : ω 1-1 V ran U ran U

Proof

Step Hyp Ref Expression
1 fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
2 fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
3 1 fin23lem13 c ω U suc c U c
4 3 rgen c ω U suc c U c
5 fveq1 b = U b suc c = U suc c
6 fveq1 b = U b c = U c
7 5 6 sseq12d b = U b suc c b c U suc c U c
8 7 ralbidv b = U c ω b suc c b c c ω U suc c U c
9 rneq b = U ran b = ran U
10 9 inteqd b = U ran b = ran U
11 10 9 eleq12d b = U ran b ran b ran U ran U
12 8 11 imbi12d b = U c ω b suc c b c ran b ran b c ω U suc c U c ran U ran U
13 2 isfin3ds ran t F ran t F b 𝒫 ran t ω c ω b suc c b c ran b ran b
14 13 ibi ran t F b 𝒫 ran t ω c ω b suc c b c ran b ran b
15 14 adantr ran t F t : ω 1-1 V b 𝒫 ran t ω c ω b suc c b c ran b ran b
16 1 fnseqom U Fn ω
17 dffn3 U Fn ω U : ω ran U
18 16 17 mpbi U : ω ran U
19 pwuni ran U 𝒫 ran U
20 1 fin23lem16 ran U = ran t
21 20 pweqi 𝒫 ran U = 𝒫 ran t
22 19 21 sseqtri ran U 𝒫 ran t
23 fss U : ω ran U ran U 𝒫 ran t U : ω 𝒫 ran t
24 18 22 23 mp2an U : ω 𝒫 ran t
25 vex t V
26 25 rnex ran t V
27 26 uniex ran t V
28 27 pwex 𝒫 ran t V
29 f1f t : ω 1-1 V t : ω V
30 dmfex t V t : ω V ω V
31 25 29 30 sylancr t : ω 1-1 V ω V
32 31 adantl ran t F t : ω 1-1 V ω V
33 elmapg 𝒫 ran t V ω V U 𝒫 ran t ω U : ω 𝒫 ran t
34 28 32 33 sylancr ran t F t : ω 1-1 V U 𝒫 ran t ω U : ω 𝒫 ran t
35 24 34 mpbiri ran t F t : ω 1-1 V U 𝒫 ran t ω
36 12 15 35 rspcdva ran t F t : ω 1-1 V c ω U suc c U c ran U ran U
37 4 36 mpi ran t F t : ω 1-1 V ran U ran U