Metamath Proof Explorer


Theorem fin23lem20

Description: Lemma for fin23 . X is either contained in or disjoint from all input sets. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
Assertion fin23lem20 A ω ran U t A ran U t A =

Proof

Step Hyp Ref Expression
1 fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
2 1 fnseqom U Fn ω
3 peano2 A ω suc A ω
4 fnfvelrn U Fn ω suc A ω U suc A ran U
5 2 3 4 sylancr A ω U suc A ran U
6 intss1 U suc A ran U ran U U suc A
7 5 6 syl A ω ran U U suc A
8 1 fin23lem19 A ω U suc A t A U suc A t A =
9 sstr2 ran U U suc A U suc A t A ran U t A
10 ssdisj ran U U suc A U suc A t A = ran U t A =
11 10 ex ran U U suc A U suc A t A = ran U t A =
12 9 11 orim12d ran U U suc A U suc A t A U suc A t A = ran U t A ran U t A =
13 7 8 12 sylc A ω ran U t A ran U t A =