Metamath Proof Explorer


Theorem fin23lem22

Description: Lemma for fin23 but could be used elsewhere if we find a good name for it. Explicit construction of a bijection (actually an isomorphism, see fin23lem27 ) between an infinite subset of _om and _om itself. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem22.b C = i ω ι j S | j S i
Assertion fin23lem22 S ω ¬ S Fin C : ω 1-1 onto S

Proof

Step Hyp Ref Expression
1 fin23lem22.b C = i ω ι j S | j S i
2 fin23lem23 S ω ¬ S Fin i ω ∃! j S j S i
3 riotacl ∃! j S j S i ι j S | j S i S
4 2 3 syl S ω ¬ S Fin i ω ι j S | j S i S
5 simpll S ω ¬ S Fin a S S ω
6 simpr S ω ¬ S Fin a S a S
7 5 6 sseldd S ω ¬ S Fin a S a ω
8 nnfi a ω a Fin
9 infi a Fin a S Fin
10 ficardom a S Fin card a S ω
11 7 8 9 10 4syl S ω ¬ S Fin a S card a S ω
12 cardnn i ω card i = i
13 12 eqcomd i ω i = card i
14 13 eqeq1d i ω i = card a S card i = card a S
15 eqcom card i = card a S card a S = card i
16 14 15 bitrdi i ω i = card a S card a S = card i
17 16 ad2antrl S ω ¬ S Fin i ω a S i = card a S card a S = card i
18 simpll S ω ¬ S Fin i ω a S S ω
19 simprr S ω ¬ S Fin i ω a S a S
20 18 19 sseldd S ω ¬ S Fin i ω a S a ω
21 nnon a ω a On
22 onenon a On a dom card
23 20 21 22 3syl S ω ¬ S Fin i ω a S a dom card
24 inss1 a S a
25 ssnum a dom card a S a a S dom card
26 23 24 25 sylancl S ω ¬ S Fin i ω a S a S dom card
27 nnon i ω i On
28 27 ad2antrl S ω ¬ S Fin i ω a S i On
29 onenon i On i dom card
30 28 29 syl S ω ¬ S Fin i ω a S i dom card
31 carden2 a S dom card i dom card card a S = card i a S i
32 26 30 31 syl2anc S ω ¬ S Fin i ω a S card a S = card i a S i
33 2 adantrr S ω ¬ S Fin i ω a S ∃! j S j S i
34 ineq1 j = a j S = a S
35 34 breq1d j = a j S i a S i
36 35 riota2 a S ∃! j S j S i a S i ι j S | j S i = a
37 19 33 36 syl2anc S ω ¬ S Fin i ω a S a S i ι j S | j S i = a
38 eqcom ι j S | j S i = a a = ι j S | j S i
39 37 38 bitrdi S ω ¬ S Fin i ω a S a S i a = ι j S | j S i
40 17 32 39 3bitrd S ω ¬ S Fin i ω a S i = card a S a = ι j S | j S i
41 1 4 11 40 f1o2d S ω ¬ S Fin C : ω 1-1 onto S