Metamath Proof Explorer


Theorem fin23lem23

Description: Lemma for fin23lem22 . (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion fin23lem23 S ω ¬ S Fin i ω ∃! j S j S i

Proof

Step Hyp Ref Expression
1 fin23lem26 S ω ¬ S Fin i ω j S j S i
2 ensym a S i i a S
3 entr j S i i a S j S a S
4 2 3 sylan2 j S i a S i j S a S
5 simpl S ω j S a S S ω
6 simprl S ω j S a S j S
7 5 6 sseldd S ω j S a S j ω
8 nnfi j ω j Fin
9 inss1 j S j
10 ssfi j Fin j S j j S Fin
11 8 9 10 sylancl j ω j S Fin
12 7 11 syl S ω j S a S j S Fin
13 simprr S ω j S a S a S
14 5 13 sseldd S ω j S a S a ω
15 nnfi a ω a Fin
16 inss1 a S a
17 ssfi a Fin a S a a S Fin
18 15 16 17 sylancl a ω a S Fin
19 14 18 syl S ω j S a S a S Fin
20 nnord j ω Ord j
21 nnord a ω Ord a
22 ordtri2or2 Ord j Ord a j a a j
23 20 21 22 syl2an j ω a ω j a a j
24 7 14 23 syl2anc S ω j S a S j a a j
25 ssrin j a j S a S
26 ssrin a j a S j S
27 25 26 orim12i j a a j j S a S a S j S
28 24 27 syl S ω j S a S j S a S a S j S
29 fin23lem25 j S Fin a S Fin j S a S a S j S j S a S j S = a S
30 12 19 28 29 syl3anc S ω j S a S j S a S j S = a S
31 ordom Ord ω
32 fin23lem24 Ord ω S ω j S a S j S = a S j = a
33 31 32 mpanl1 S ω j S a S j S = a S j = a
34 30 33 bitrd S ω j S a S j S a S j = a
35 4 34 syl5ib S ω j S a S j S i a S i j = a
36 35 ralrimivva S ω j S a S j S i a S i j = a
37 36 ad2antrr S ω ¬ S Fin i ω j S a S j S i a S i j = a
38 ineq1 j = a j S = a S
39 38 breq1d j = a j S i a S i
40 39 reu4 ∃! j S j S i j S j S i j S a S j S i a S i j = a
41 1 37 40 sylanbrc S ω ¬ S Fin i ω ∃! j S j S i