Metamath Proof Explorer


Theorem fin23lem25

Description: Lemma for fin23 . In a chain of finite sets, equinumerosity is equivalent to equality. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion fin23lem25 A Fin B Fin A B B A A B A = B

Proof

Step Hyp Ref Expression
1 dfpss2 A B A B ¬ A = B
2 php3 B Fin A B A B
3 sdomnen A B ¬ A B
4 2 3 syl B Fin A B ¬ A B
5 4 ex B Fin A B ¬ A B
6 1 5 syl5bir B Fin A B ¬ A = B ¬ A B
7 6 adantl A Fin B Fin A B ¬ A = B ¬ A B
8 7 expd A Fin B Fin A B ¬ A = B ¬ A B
9 dfpss2 B A B A ¬ B = A
10 eqcom B = A A = B
11 10 notbii ¬ B = A ¬ A = B
12 11 anbi2i B A ¬ B = A B A ¬ A = B
13 9 12 bitri B A B A ¬ A = B
14 php3 A Fin B A B A
15 sdomnen B A ¬ B A
16 ensym A B B A
17 15 16 nsyl B A ¬ A B
18 14 17 syl A Fin B A ¬ A B
19 18 ex A Fin B A ¬ A B
20 13 19 syl5bir A Fin B A ¬ A = B ¬ A B
21 20 adantr A Fin B Fin B A ¬ A = B ¬ A B
22 21 expd A Fin B Fin B A ¬ A = B ¬ A B
23 8 22 jaod A Fin B Fin A B B A ¬ A = B ¬ A B
24 23 3impia A Fin B Fin A B B A ¬ A = B ¬ A B
25 24 con4d A Fin B Fin A B B A A B A = B
26 eqeng A Fin A = B A B
27 26 3ad2ant1 A Fin B Fin A B B A A = B A B
28 25 27 impbid A Fin B Fin A B B A A B A = B